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Autonomous vehicles: An 
imperfect path to saving 
millions of lives

A
utonomous vehicles (AVs) are imperfect, but 
they are likely to eventually become safer drivers 
than humans. According to the World Health Or-
ganization in 2018, 1.35 million humans died in 
automotive fatalities, with tens of millions more 
injuries and disabilities (1). Few of those deaths 
were the result of part failure or bad luck; the ma-

jority resulted from intoxication, texting while driving, 
and other distractions. Although autonomous vehicles 
still have a long way to develop, they already have a track 
record of fewer crashes than humans per million miles 
driven, albeit mostly under good conditions. People may 
disagree on the precise road conditions and safety differ-
entials between humans and AVs, but it seems likely that 
eventually AVs will save millions of lives. They do not 
have to be perfect, in spite of the furor when one is in-
volved in an accident. They just have to be safer, perhaps a 
lot safer for adoption than the currently available alterna-
tives. AVs will transform the insurance and automotive 
industries, reshape transportation and delivery alterna-
tives, and alter social behavior and the urban landscape. 
No amount of bad news from AV accidents over the next 
few years will change that outcome, independent of the 
timing of acceptance in different applications and juris-
dictions. What remains is a lot of research, development, 
engineering, and testing work to continuously improve 
autonomous vehicles with the goal of utilizing them as 
soon as possible to save lives.

This special section includes a research paper titled 
“Neural network vehicle models for high-performance 
automated driving” (2). The Stanford University team 
trained a neural network structure using a sequence 
of past states and inputs motivated by a physical model. 
The neural network achieved better performance than 
the physical model when implemented in the same 
feedforward-feedback control architecture on an ex-
perimental vehicle. Further, when trained on a combi-
nation of data from dry roads and snow, the system 
was able to make appropriate predictions for the road 
surface on which the vehicle was traveling without the 
need for explicit road friction estimation. This work 
contributes to eventually expanding the model-based 
control of automated vehicles over their full operating 
range.

The research paper titled “AADS: Augmented auton-
omous driving simulation using data-driven algorithms” 
(3) augmented real-world pictures with a simulated traf-
fic flow to create photorealistic simulation images and 

renderings. The paper, based on China/U.S. teamwork, 
utilized LiDAR and cameras to scan street scenes. The 
system generated plausible traffic flows for cars and pe-
destrians and composed them into the background. The 
composite images could then be resynthesized with dif-
ferent viewpoints and sensor models (camera or LiDAR). 
The resulting images are photorealistic and annotated. 
The system provides some scenarios of end-to-end 
training and testing of autonomous driving systems 
from perception to planning.

The Focus paper “Self-driving cars: A city perspec-
tive” (4) points out that, although AVs navigate cities 
with  out modifying the roadbed, they will be integrat-
ing signals from a wide variety of urban sources. These 
sources include traffic flows, aggregated smart phone 
data, car sharing, and more. In addition, AVs will drive 
changes in parking spaces and garages, real estate pric-
es, commuting patterns (such as sleeper cars and buses 
for travel greater than 500 miles), and ride-sharing pat-
terns. Overall, AVs will both drive and coevolve with 
changes in the urban landscape.

The Focus paper “Parallel testing of vehicle intelli-
gence via virtual-real interaction” (5) reports a closed-
loop parallel testing system from the longest-lasting 
Chinese AV competition: the Intelligent Vehicle Future 
Challenge of China (IVFC). Developers still lack a sys-
tematic and standardized way to test the capabilities of 
autonomous vehicles. The paper addressed three major 
programmatic objectives in testing autonomous vehicles. 
First, they generated and classified a standard set of driv-
ing tasks. Second, they designed a testing system that 
integrates simulation and field testing of real-world traffic 
tasks in various scenarios. Third, they built an integrated 
and closed-loop system to evaluate the task-specific per-
formance of autonomous vehicles and help to improve 
the testing system itself.

It is interesting and useful to compare these methods 
with others used elsewhere. The key is not to claim su-
periority, but rather to encourage learning across pro-
grams over time. Additional information is available for 
each program via the authors. The AV industry has just 
begun to share data widely, with some initial caution 
due to competitive concerns. However, given the critical 
life-saving importance of AVs, we think that there is much 
to be gained by data sharing and continuous improve-
ment across platforms.

 – Neil Jacobstein
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Task-agnostic self-modeling machines
Robert Kwiatkowski1* and Hod Lipson2,3

A robot modeled itself without prior knowledge of physics or its shape and used the self-model to perform tasks 
and detect self-damage.

We humans are masters of self-reflection. We 
form a mental picture of ourselves by revis-
iting past experiences and use that mental 
image to contemplate future scenarios. Our 
mental self-image contains information about 
our body configuration in physical space. Our 
self-image also gives us the ability to link future 
actions with likely sensations. Your mental 
self-image allows you to imagine yourself 
walking on the beach tomorrow, smelling the 
ocean and feeling the sand under your feet.

An accurate self-image will be key to allow-
ing robots to learn and plan internally without 
resorting to costly training in physical reality 
for each new task. The ability to self-simulate 
can create an illusion of one-shot learning, 
whereas in actuality, adaptation involves incre-
mental learning or planning inside an internal 
self-image. A self-image can also be used to 
identify and track damage, wear, or growth.

Humans likely acquire their self-image 
early in life and adapt it continuously (1). 
However, most robots today cannot gen-
erate their own self-image. Although recent 
advances in machine learning have allowed 
robots to become increasingly adept at un-
derstanding the world around them, when 
it comes to understanding themselves, most 
robots today still rely on a hard-coded simu-
lator (2,3). These designer-provided simula-
tors are laborious to construct and invariably 
become outdated.

As an alternative to self-modeling, many 
robotic systems do without a model altogether 
by using end-to-end training for a specific 
task, applying techniques such as model-free 
reinforcement learning (4). Such task-specific 
learning may be good for narrow artificial 
intelligence (AI) but lacks the generality and 
transferability required for robots capable of 
continuously learning new tasks through-
out their lives.

Here, we suggest that, because the robot 
itself is persistent across multiple tasks, there 

is strong incentive to extract a self-model and 
then reuse that self-model repeatedly to learn 
new tasks. Moreover, by separating the self 
from the task, every future experience can be 
used to refine a common self-model, leading 
to continuous self-monitoring.

Early adaptive control methods also at-
tempted to tune parameters of a fixed an-
alytical self-model (5). We previously used 
evolutionary algorithms to find the mor-
phology most consistent with the robot’s re-
corded action-sensation pairs (6), but both 
approaches make many assumptions. A key 
question remained: Can a robot create a self- 
model with no prior knowledge?

First, we chose a physical robot with four 
coupled degrees of freedom. The robot re-
corded action-sensation pairs by moving 
through 1000 random trajectories (Fig. 1, 
step 1). Actions correspond to four motor 
angle commands and sensations correspond 
to the absolute coordinate of the end effec-
tor. This step is not unlike a babbling baby 
observing its hands. The entire captured 
dataset is provided in (7).

Importantly, when a robot’s motors are 
commanded to achieve some target angles, 
they do not necessarily reach those angles due 
to hysteresis, self-collision, structural flexi-
bility, and other effects. Therefore, a high- 
fidelity self-model must capture not just the 
direct geometric transformations from the 
robot’s base to the end effector, but an im-
plicit relationship between current positions, 
new motor commands, past positions, and 
past motor commands.

We used deep learning to train a self- 
model (Fig. 1, step 2). Using the acquired 
self-model, the robot could apply a simple 
planning strategy to accomplish a variety of 
tasks. We tested the performance of the ro-
bot on two separate tasks: a pick-and-place 
task and a handwriting task (Fig. 1, step 3), 
both in open and in closed loop.

Closed-loop control allows the robot to 
recalibrate its actual position between each 
step along the trajectory by using positional 
sensor feedback. In contrast, open-loop con-
trol involves carrying out a task based en-
tirely on the internal self-model, without any 
external feedback, like reaching for your nose 
with eyes closed. This test is also frequently 
used to test human cerebellar dysfunction 
such as dysmetria (8).

We ran multiple tests with both explicit 
and implicit representations. Explicit mod-
els capture the relationship between motor 
commands and end-effector position but 
cannot handle self-collision. Implicit mod-
els capture the sequential relationship be-
tween state-action pairs and thus are more 
general. In open-loop tests where planning was 
completed successfully, the median distance 
between the physical effector and the target 
was 4.3 cm. In closed loop, the self- model 
achieved a median physical error of 0.6 cm, 
an error lower than the accuracy between the 
analytical model and the physical robot. The 
explicit model achieved a median accuracy of 
0.65 cm. These results suggest that acquired 
self-models would be able to successfully exe-
cute internal planning and learning on par 
with a conventional simulator.

The second test involved a combination 
of subtasks and gripper actuations. The ro-
bot used its self-model to plan how to pick 
and deposit nine red balls, each 20 mm in 
diameter. In closed loop, the self-models 
had sufficient accuracy and consistency to 
execute a pick-and-place task with precision 
similar to analytical forward kinematics. 
The open-loop pick rate was 44%, whereas 
the place rate was 100% of successful picks, 
and most failures were a result of the plan-
ner, not of the self-model.

To demonstrate that the same self-model 
could be used for other tasks without addi-
tional task-specific retraining, we performed 
a second task involving simple handwriting 
with a marker. This task was used for quali-
tative assessment only.

We concluded by replacing one of the ro-
bot arms with a longer and slightly deformed 
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part as a proxy for unanticipated morpholog-
ical damage (Fig. 1, step 4). The robot was 
able to detect the change and retrain the self- 
model using 10% additional data (Fig. 1, 
step 5). The new self-model allowed the robot 
to resume its original pick-and-place task with 
little loss of performance (Fig. 1, step 6).

Robotics research has historically split be-
tween two camps: model-predictive control 
and model-free learning. We propose a hybrid 
where machine learning acquires a self- model 
that is then reused to perform planning or 
learning internally. This way, data collected 
in the course of any task can help refine the 
self-model and thus transfer to other tasks.

Self-imaging will be key to allowing ro-
bots to move away from the confinements 
of so-called narrow AI toward more general 
abilities. We conjecture that this separation 
of self and task may have also been the evo-
lutionary origin of self-awareness in humans.

SUPPLEMENTARY MATERIALS
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Section S1. Related work
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Fig. S7. Rendering of the CAD model used to 3D-print the 
deformed arm length.
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Fig. 1. Self-model gen-
eration, usage, and adap-
tation. An outline of the 
self-modeling process from 
data collection to task plan-
ning. (Step 1) The robot 
recorded action-sensation 
pairs. (Step 2) The robot 
used deep learning to cre-
ate a self-model consistent 
with the data. (Step 3) The 
self-model could be used 
for internal planning of two 
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further physical experimen-
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(Step 5) The robot adapted 
the self-model using new 
data. (Step 6) Task execu-
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XAI—Explainable artificial intelligence
David Gunning1*†, Mark Stefik2, Jaesik Choi3, Timothy Miller4, Simone Stumpf5, Guang-Zhong Yang6†

Explainability is essential for users to effectively understand, trust, and manage powerful artificial intelligence 
applications.

Recent successes in machine learning (ML) 
have led to a new wave of artificial intelligence 
(AI) applications that offer extensive benefits 
to a diverse range of fields. However, many 
of these systems are not able to explain their 
autonomous decisions and actions to human 
users. Explanations may not be essential for 
certain AI applications, and some AI re-
searchers argue that the emphasis on expla-
nation is misplaced, too difficult to achieve, 
and perhaps unnecessary. However, for many 
critical applications in defense, medicine, 
finance, and law, explanations are essential 
for users to understand, trust, and effectively 
manage these new, artificially intelligent 
partners [see recent reviews (1–3)].

Recent AI successes are largely attributed 
to new ML techniques that construct models 
in their internal representations. These in-
clude support vector machines (SVMs), ran-
dom forests, probabilistic graphical models, 
reinforcement learning (RL), and deep learning 
(DL) neural networks. Although these models 
exhibit high performance, they are opaque 
in terms of explainability. There may be in-
herent conflict between ML performance 
(e.g., predictive accuracy) and explainability. 
Often, the highest performing methods 
(e.g., DL) are the least explainable, and the 
most explainable (e.g., decision trees) are 
the least accurate. Figure 1 illustrates this 
with a notional graph of the performance- 
explainability tradeoff for some of the ML 
techniques.

WHAT IS XAI?
The purpose of an explainable AI (XAI) sys-
tem is to make its behavior more intelligible 
to humans by providing explanations. There 
are some general principles to help create 
effective, more human-understandable AI 
systems: The XAI system should be able to 
explain its capabilities and understandings; 
explain what it has done, what it is doing 
now, and what will happen next; and dis-
close the salient information that it is acting 
on (4).

However, every explanation is set within 
a context that depends on the task, abilities, 
and expectations of the user of the AI system. 
The definitions of interpretability and ex-
plainability are, thus, domain dependent and 
may not be defined independently from a 
domain. Explanations can be full or partial. 
Models that are fully interpretable give full 

and completely transparent explanations. 
Models that are partially interpretable reveal 
important pieces of their reasoning process. 
Interpretable models obey “interpretability 
constraints” that are defined according to 
the domain (e.g., monotonicity with respect 
to certain variables and correlated variables 
obey particular relationships), whereas black 
box or unconstrained models do not neces-
sarily obey these constraints. Partial expla-
nations may include variable importance 
measures, local models that approximate global 
models at specific points and saliency maps.

EXPECTATION FROM USERS
XAI assumes that an explanation is provided 
to an end user who depends on the decisions, 
recommendations, or actions produced by an 
AI system, yet there could be many different 

1Defense Advanced Research Projects Agency (DARPA), 
675 North Randolph Street, Arlington, VA 22201, USA. 
2Palo Alto Research Center, 3333 Coyote Hill Road, 
Palo Alto, CA 94304, USA. 3Graduate School of Artifi-
cial Intelligence, Korea Advanced Institute of Science 
and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 
34141, Republic of Korea. 4School of Computing and 
Information Systems, University of Melbourne, Victoria 
3010, Australia. 5Centre for HCI Design, School of 
Mathematics, Computer Science and Engineering, City, 
University of London, London EC1V 0HB, UK. 6Institute 
of Medical Robotics, Shanghai Jiao Tong University, 
Shanghai, China.
*Present address: Facebook AI Research, 770 Broadway, 
New York, NY 10003, USA.
†Corresponding author. Email: dgunning@fb.com (D.G.); 
gzyang@sjtu.edu.cn (G.-Z.Y.)
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Performance vs. explainability

Fig. 1. Performance versus explainability tradeoff for ML techniques. (A) Learning techniques and explain-
ability. Concept adapted from (9). (B) Interpretable models: ML techniques that learn more structured, interpreta-
ble, or causal models. Early examples included Bayesian rule lists, Bayesian program learning, learning models 
of causal relationships, and using stochastic grammars to learn more interpretable structure. Deep learning: 
Several design choices might produce more explainable representations (e.g., training data selection, architectural 
layers, loss functions, regularization, optimization techniques, and training sequences). Model agnostic: Tech-
niques that experiment with any given ML model, as a black box, to infer an approximate explainable model. C
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kinds of users, often at different time points 
in the development and use of the system 
(5). For example, a type of user might be an 
intelligence analyst, a judge, or an operator. 
However, other users who demand an ex-
planation of the system may be developers or 
test operators who need to understand where 
there might be areas of improvement. Yet, 
another user might be policy makers, who are 
trying to assess the fairness of the system. 
Each user group may have a preferred ex-
planation type that is able to communicate 
information in the most effective way. An 
effective explanation will take the target user 
group of the system into account, who might 
vary in their background knowledge and 
needs for what should be explained.

EXPLAINABILITY—EVALUATION 
AND MEASUREMENT
A number of ways of evaluating and measuring 
the effectiveness of an explanation have been 
proposed; however, there is currently no 
common means of measuring whether an XAI 
system is more intelligible to a user than a 
non-XAI system. Some of these measures are 
subjective measures from the user’s point of 
view, such as user satisfaction, which can be 
measured through a subjective rating of the 
clarity and utility of an explanation. More 
objective measures for an explanation’s effect-
iveness might be task performance; i.e., does 
the explanation improve the user’s decision- 
making? Reliable and consistent measurement 
of the effects of explanations is still an open 
research question. Evaluation and measure-
ment for XAI systems include evaluation 
frameworks, common ground [different think-
ing and mutual understanding (6)], common 
sense, and argumentation [why (7)].

XAI—ISSUES AND CHALLENGES
There remain many active issues and challenges 
at the intersection of ML and explanation.

1) Starting from computers versus start-
ing from people (8). Should XAI systems 

tailor explanations to particular users? 
Should they consider the knowledge that 
users lack? How can we exploit explanations 
to aid interactive and human-in-the-loop 
learning, including enabling users to inter-
act with explanations to provide feedback 
and steer learning?

2) Accuracy versus interpretability. A 
major thread of XAI research on explana-
tion explores techniques and limitations of 
interpretability. Interpretability needs to 
consider tradeoffs involving accuracy and 
fidelity and to strike a balance between ac-
curacy, interpretability, and tractability.

3) Using abstractions to simplify expla-
nations. High-level patterns are the basis for 
describing big plans in big steps. Automating 
the discovery of abstractions has long been a 
challenge, and understanding the discovery 
and sharing of abstractions in learning and 
explanation are at the frontier of XAI re-
search today.

4) Explaining competencies versus ex-
plaining decisions. A sign of mastery by 
highly qualified experts is that they can 
reflect on new situations. It is necessary to 
help end users to understand the competen-
cies of the AI systems in terms of what com-
petencies a particular AI system has, how 
the competencies should be measured, and 
whether an AI system has blind spots; that 
is, are there classes of solutions it can never 
find?

From a human-centered research per-
spective, research on competencies and 
knowledge could take XAI beyond the role 
of explaining a particular XAI system and 
helping its users to determine appropriate 
trust. In the future, XAIs may eventually 
have substantial social roles. These roles 
could include not only learning and ex-
plaining to individuals but also coordinating 
with other agents to connect knowledge, 
developing cross-disciplinary insights and 
common ground, partnering in teaching 
people and other agents, and drawing on 
previously discovered knowledge to acceler-
ate the further discovery and application of 

knowledge. From such a social perspective 
of knowledge understanding and generation, 
the future of XAI is just beginning.
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Forging global cooperation and collaboration
Guang-Zhong Yang1*, Tong Boon Quek2,3, Stefano Stramigioli4,5, Han Ding6,  
Dong Sun7, Junku Yuh8

As researchers create better robots, major robotics initiatives and government funding programs need better 
international cooperation and collaboration.

The year 2020 will witness a continuing 
increase in global robot installations. The 
five major markets for industrial robots—
the United States, China, Japan, South Korea, 
and Germany—now account for nearly 75% 
of the total installations (Fig. 1), and the 
predicted per-year increase in average between 
2020 and 2022 is likely to reach +12%. Whereas 
new manufacturing technologies such as 
industry 4.0 are driving the growing demand 
for robots, demographic shift associated with 
the aging population will see the use of robots 
for assistive and domestic applications jump 
significantly. The World Health Organization 
(WHO) predicts that by 2050, the proportion 
of the world’s population over 60 years will 
reach 22%, which, in absolute number, will 
hit 2 billion (1).

In 2011, the U.S. government announced 
a new initiative called the National Robotics 
Initiative with investments for major advances 
in next-generation robotics. A new solicit-
ation for fiscal year 2020, the National 
Robotics Initiative 2.0: Ubiquitous Collab-
orative Robots (NRI-2.0), has been announced 
as a joint effort of the National Science 
Foundation, the National Aeronautics and 
Space Administration, the National Insti-
tute for Occupational Safety and Health, 
and the U.S. Department of Agriculture 
National Institute of Food and Agriculture. 
The first NRI was established as the result 
of many years of effort, and the first U.S. 
National Robotics Roadmap was published 
in 2009 and updated in 2013 and 2016 (2). 
A further update is due in August 2020. It 
identified three major factors that drive 
the adoption of robots: economic growth, 
quality of life, and safety of first responders. 
For the first two, they are clearly interlinked—
improved productivity in what is now a 

fiercely competitive international market and 
in the presence of an increasingly aging 
society. This pressure is clearly felt by many 
developed and developing countries.

With more than 800 robots per 10,000 em-
ployees, Singapore is now among the high-
est in the world in terms of industrial robot 
density (3). This high density reflects the 
city-state’s reliance on technology, such as 
robotics, as a resource multiplier to mitigate 
the impact of its aging population due to 
consistently low birth rates. This complements 
its relatively open immigrant policy. With 45% 
of residents who are foreign born, Singapore 
is now one of the most cosmopolitan nations 
in the world. The National Robotics Programme 
(NRP) of Singapore has been established to 
encourage greater adoption of robotics and 
to ensure a more coordinated, coherent, and 
concerted effort in building Singapore’s 
robotics capabilities. It is focused on technology 
and expertise development in robotics enablers, 
such as those related to end effectors, high- 
performance tactile sensors, indoor navigation 
in dense human environments, human-robotics 
interactions, soft robotics, and configurable 
robots. NRP is also working with relevant 
agencies to identify and close the gaps in 
standards, testing, and certification for robots 
and their supporting infrastructure especially 
for service robots. Given its resource constraints, 
particularly the demographic challenges, it 
is inevitable that Singapore will be a major 
robotics user. The NRP aims to make it a 
robotics innovator as well.

South Korea has also been ranked among 
the highest in robot density according to the 
International Federation of Robotics (IFR) 
(3). These rankings reflect the large investment 
in robotics by the government and emerging 
and well-established companies. The South 

Korean government has dedicated about 
$150 million to $200 million in its annual 
budget toward research and development 
(R&D) in robotics, and plans are in place to 
expand the robotics market size to $15 billion 
in 2023. The Ministry of Trade, Industry and 
Energy (MOTIE) spearheaded this R&D 
effort in robotics and established the Intelligent 
Robots Development and Distribution Pro-
motion Act in 2008, which requires that a 
nationwide strategy on intelligent robots be 
presented every 5 years. The South Korean 
government has sponsored large R&D pro-
grams in robotics, such as the Underwater 
Construction Robotics R&D Center spon-
sored by the Ministry of Oceans and Fisheries 
(www.ucrc.re.kr/page_home_eng), Biomimetic 
Mechatronics (Bionic Arm) sponsored by 
the Ministry of Science and ICT (www.kist.
re.kr/rmi), and Disaster Robotics R&D 
Center sponsored by MOTIE (http://drc.
re.kr/). The South Korean government also 
offers various funding programs for inter-
national collaboration.

Europe is, in statistics, often presented as 
separate countries but it is more meaningful 
to treat it as a single entity for comparisons 
with, for example, the United States, consider-
ing that the largest research programs are 
coordinated at the European level. Already 
in 1998, the various scientific robotic stake-
holders coordinated to form the EURON net-
work. In the years after, the industrial network 
EUROP was formed; during the Seventh Re-
search Framework of the European Commission 
(FP7), the two initiatives were joined into the 
euRobotics association (www.eu- robotics.net).

euRobotics has functioned as the private 
side in the public-private partnerships (PPPs) 
called SPARC (www.eu-robotics.net/sparc), 
which runs in the eighth framework called 
Horizon 2020 that ends in 2020. The European 
Commission is working to define the new 
framework program. The new program will 
have a part called Horizon Europe, which 
will be targeting research, and a second part 
called Digital Europe, which will be addressing 
industry and deployment of new technologies 
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for the digital economy and society. Horizon 
Europe will be divided further in three pillars: 
(i) Excellent Science, (ii) Global Challenges 
and European Industrial Competitiveness, 
and (iii) Innovative Europe. For pillar two, 
which addresses the cooperation between 
academia and industry to boost technologies 
and solutions underpinning EU policies and 
sustainable development goals, a budget of 
€52.7 billion has been proposed. New PPPs 
will be proposed, and euRobotics has taken 
the lead together with the Big Data Value 
Association to create a new partnership on 
artificial intelligence (AI) for which euRobotics 
will clearly cover the essential and most 
difficult physical part of AI. This new AI 
PPP will form the basis for the robotics 
investment until 2027. Furthermore, not 
related to PPP, other important initiatives 
are also forming to support the work of 
euRobotics as a private association from 
the content side, which include, for example, 
CENTRIS (www.centris-ai.eu), which gathers 
top scientists and researchers in Europe to 

create an even stronger knowledge base for 
European robotics.

We have seen, in recent years, increasing 
development of cooperative robots—robots 
that are able to cooperate with human operators, 
learn from demonstrations, interact intelli-
gently with the environment, and collaborate 
seamlessly with their robot peers of similar 
or different architectures. To support this, 
the National Natural Science Foundation of 
China launched an 8-year, $200 million 
national research initiative called the Tri-Co 
(Coexisting-Cooperative-Cognitive) Robot 
in 2016. Coexistence will allow robots to 
ubiquitously and safely work alongside 
humans, whereas cooperation will enable 
robots to coordinate and collaborate effec-
tively with other agents (either people or 
robots). Last, cognition will provide robots 
with the means to gather information, 
perceive, learn, and predict environmental 
changes and the behaviors of other agents. 
From deep sea to space exploration, from 
microrobotics to megascale infrastructure 

robots, the pace of development and gov-
ernment support for robotics in China is 
accelerating. There is also increasingly 
strong synergy among fundamental science, 
technology development, and applications 
of robots.

Research efforts are making robots more 
intelligent, cooperative, and interconnected 
with improved learning and adaptation, 
interoperability, autonomy, and human-robot 
interaction, and major robotics initiatives and 
government funding programs need better 
international cooperation and collaboration. 
This needs to be at both strategic and tactical 
levels because we are all faced with similar 
socioeconomic challenges and the need for 
developing new talents. From the research 
and development standpoint, future gener-
ations of robotics need to be supported by a 
wide range of science and engineering disci-
plines as identified in (4). It is only through 
such cooperation and collaboration that we 
can make a true difference in the societal 
value of robotics.
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Learning ambidextrous robot grasping policies
Jeffrey Mahler1,2*, Matthew Matl1, Vishal Satish1, Michael Danielczuk1, Bill DeRose2,
Stephen McKinley2, Ken Goldberg1,2

Universal picking (UP), or reliable robot grasping of a diverse range of novel objects from heaps, is a grand challenge
for e-commerceorder fulfillment,manufacturing, inspection, andhome service robots. Optimizing the rate, reliability,
and range of UP is difficult due to inherent uncertainty in sensing, control, and contact physics. This paper explores
“ambidextrous” robot grasping,where two ormore heterogeneous grippers are used.We present Dexterity Network
(Dex-Net) 4.0, a substantial extension to previous versions of Dex-Net that learns policies for a given set of grippers
by training on synthetic datasets using domain randomization with analytic models of physics and geometry. We
train policies for a parallel-jaw and a vacuum-based suction cup gripper on 5 million synthetic depth images,
grasps, and rewards generated from heaps of three-dimensional objects. On a physical robot with two grippers,
the Dex-Net 4.0 policy consistently clears bins of up to 25 novel objects with reliability greater than 95% at a rate of
more than 300 mean picks per hour.

INTRODUCTION
Universal picking (UP), or the ability of robots to rapidly and reliably
grasp a wide range of novel objects, can benefit applications in ware-
housing, manufacturing, medicine, retail, and service robots. UP is
highly challenging because of inherent limitations in robot perception
and control. Sensor noise and occlusions obscure the exact geometry
and position of objects in the environment. Parameters governing
physics such as center of mass and friction cannot be observed directly.
Imprecise actuation and calibration lead to inaccuracies in arm
positioning. Thus, a policy for UP cannot assume precise knowledge
of the state of the robot or objects in the environment.

One approach to UP is to create a database of grasps on three-
dimensional (3D) object models using grasp performance metrics
derived from geometry and physics (1, 2) with stochastic sampling
to model uncertainty (3, 4). This analytic method requires a percep-
tion system to register sensor data to known objects and does not gen-
eralize well to a large variety of novel objects in practice (5, 6). A
second approach uses machine learning to train function approxima-
tors such as deep neural networks to predict the probability of success
of candidate grasps from images using large training datasets of em-
pirical successes and failures. Training datasets are collected from
humans (7–9) or physical experiments (10–12). Collecting such data
may be tedious and prone to inaccuracies due to changes in calibration
or hardware (13).

To reduce the cost of data collection, we explored a hybrid ap-
proach that uses models from geometry and mechanics to generate
synthetic training datasets. However, policies trained on synthetic data
may have reduced performance on a physical robot due to inherent
differences between models and real-world systems. This simulation-
to-reality transfer problem is a long-standing challenge in robot
learning (14–17). To bridge the gap, the hybrid method uses domain
randomization (17–22) over objects, sensors, and physical parameters.
This encourages policies to learn grasps that are robust to imprecision
in sensing, control, and physics. Furthermore, themethod plans grasps
based on depth images, which can be simulated accurately using ray
tracing (18, 19, 23) and are invariant to object color (24).

The hybrid approach has been used to learn reliable UP policies on
a physical robot with a single gripper (25–28). However, different
grasp modalities are needed to reliably handle a wide range of objects
in practice. For example, vacuum-based suction-cup grippers can eas-
ily grasp objects with nonporous, planar surfaces such as boxes, but
they may not be able to grasp small objects, such as paper clips, or
porous objects, such as cloth.

In applications such as the Amazon Robotics Challenge, it is com-
mon to expand range by equipping robots with more than one end ef-
fector (e.g., both a parallel-jaw gripper and a suction cup). Domain
experts typically hand-code a policy to decide which gripper to use at
runtime (29–32). These hand-coded strategies are difficult to tune and
may be difficult to extend to new cameras, grippers, and robots.

Here, we introduce “ambidextrous” robot policy learning using the
hybrid approach to UP. We propose the Dexterity Network (Dex-Net)
4.0 dataset generation model, extending the gripper-specific models of
Dex-Net 2.0 (19) and Dex-Net 3.0 (19). The framework evaluates all
grasps with a commonmetric: expectedwrench resistance, or the ability
to resist task-specific forces and torques, such as gravity, under random
perturbations.

We implement the model for a parallel-jaw gripper and a vacuum-
based suction cup gripper and generate theDex-Net 4.0 training dataset
containing more than 5 million grasps associated with synthetic point
clouds and grasp metrics computed from 1664 unique 3D objects in
simulated heaps. We train separate Grasp Quality Convolutional Neu-
ral Networks (GQ-CNNs) for each gripper and combine them to plan
grasps for objects in a given point cloud.

The contributions of this paper are as follows:
1) A partially observable Markov decision process (POMDP)

framework for ambidextrous robot grasping based on robust wrench
resistance as a common reward function.

2) An ambidextrous grasping policy trained on the Dex-Net 4.0
dataset that plans a grasp to maximize quality using a separate GQ-
CNN for each gripper.

3) Experiments evaluating performance on bin picking with heaps
of up to 50 diverse, novel objects and an ABB YuMi robot with a
parallel-jaw and suction-cup gripper in comparison with hand-coded
and learned baselines.

Experiments suggest that the Dex-Net 4.0 policy achieves 95% relia-
bility on a physical robot with 300 mean picks per hour (MPPH) (suc-
cessful grasps per hour).

1Department of Electrical Engineering and Computer Sciences, UC Berkeley,
Berkeley, CA 94720, USA. 2Department of Industrial Engineering and Operations
Research, UC Berkeley, Berkeley, CA 94720, USA.
*Corresponding author. Email: jmahler@berkeley.edu
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RESULTS
Ambidextrous robot grasping
We consider the problem of ambidextrous grasping of a wide range of
novel objects from cluttered heaps using a robot with a depth camera and
twoormore available grippers, such as a vacuum-based suction-cup grip-
per and/or a parallel-jaw gripper. To provide context for the metrics and
approaches considered in experiments, we formalize this problem as a
POMDP (33) inwhich a robot plans grasps tomaximize expected reward
(probability of grasp success) given imperfect observations of the
environment.

A robot with an overhead depth camera views a heap of novel
objects in a bin. On grasp attempt t, a robot observes a point cloud
yt from the depth camera. The robot uses a policy ut = p(yt) to plan
a grasp action ut for a gripper g consisting of a 3D rigid position and
orientation of the gripperTg = (Rg, tg) ∈ SE (3). Upon executing ut, the
robot receives a reward Rt = 1 if it successfully lifts and transports ex-
actly one object from the bin to a receptacle and Rt = 0 otherwise. The
observations and rewards depend on a latent state xt that is unknown
to the robot and describes geometry, pose, center ofmass, andmaterial
properties of each object. After either the bin is empty or T total grasp
attempts, the process terminates.

These variables evolve according to an environment distribution
that reflects sensor noise, control imprecision, and variation in the
initial bin state:

1) Initial state distribution. Let p(x0) be a distribution over pos-
sible states of the environment that the robot is expected to handle
due to variation in objects and tolerances in camera positioning.

2) Observation distribution. Let p(yt|xt) be a distribution over
observations given a state due to sensor noise and tolerances in
the camera optical parameters.

3) Transition distribution. Let p(xt+1|xt,ut) be a distribution over
next states given the current state and grasp action due to im-
precision in control and physics.

The goal is to learn a policy p to maximize the rate of reward, or
MPPH r, up to a maximum of T grasp attempts:

rðpÞ ¼ E ∑
T�1

t¼0
Rt

 !�
∑
T�1

t¼0
Dt

 !" #

where T is the number of grasp attempts and Dt is the duration of
executing grasp action ut in hours. The expectation is taken with
respect to the environment distribution:

pðx0; y0;…; xT ; yT jpÞ ¼ pðx0Þ ∏
T�1

t¼0
pðyt jxtÞpðxtþ1jxt ; pðytÞÞ

It is common to measure performance in terms of the mean rate v
and reliabilityF (also known as the success rate) of a grasping policy for
a given range of objects:

n ¼ 1=E½Dt � FðpÞ ¼ E 1
T
∑

T�1

t¼0
Rt

� �

If the time per grasp is constant, theMPPH is the product of rate and
reliability: r = vF.

Learning from synthetic data
We propose a hybrid approach to ambidextrous grasping that learns
policies on synthetic training datasets generated using analytic models

and domain randomization over a diverse range of objects, cameras,
and parameters of physics for robust transfer from simulation to reality
(17, 20, 22). Themethod optimizes for a policy tomaximizeMPPH un-
der the assumption of a constant time per grasp: p* ¼ argmaxp FðpÞ.

To learn a policy, the method uses a training dataset generation
distribution based onmodels from physics and geometry, m, to compu-
tationally synthesize a massive training dataset of point clouds, grasps,
and reward labels for heterogeneous grippers. The distribution m con-
sists of two stochastic components: (i) a synthetic training environment
x(y0, R0,…, yT, RT|p) that can sample paired observations and rewards
given a policy and (ii) a data collection policy t(ut|xt, yt) that can sample
a diverse set of grasps using full-state knowledge. The synthetic training
environment simulates grasp outcomes by evaluating rewards
according to the ability of a grasp to resist forces and torques due to
gravity and random peturbations. The environment also stochastically
samples heaps of 3D objects in a bin and renders depth images of the
scene using domain randomization over the camera position, focal
length, and optical center pixel. The dataset collection policy evaluates
actions in the synthetic training environment using algorithmic super-
vision to guide learning toward successful grasps.

We explore large-scale supervised learning on samples from m to
train the ambidextrous policy pq across a set of two or more available
grippers G, as illustrated in Fig. 1. First, we sample a massive training
datasetD ¼ fðRiyiuiÞgNi¼1 from a software implementation of m. Then,
we learn a GC-CNN Qq,g(y, u) ∈ [0, 1] to estimate the probability of
success for a grasp with gripper g given a depth image. Specifically,
we optimize the weights qg to minimize the cross entropy loss L be-
tween the GQ-CNN prediction and the true reward over the datasetD:

q*g ¼ argmin
qg∈Q

∑
ðRi;ui;yiÞ∈Dg

LðRi;Qqðyi; uiÞÞ

whereDg denotes the subset of the training datasetDcontaining only
grasps for gripper g. We construct a robot policy pq from the GQ-
CNNs by planning the grasp that maximizes quality across all avail-
able grippers:

pqðytÞ ¼ argmax
g∈G

max
ug∈Ug

Qq;gðyt ; ugÞ
� �

where Ug is a set of candidate grasps for gripper g sampled from the
depth image.

To evaluate themethod,we learn theDex-Net 4.0 ambidextrous pol-
icy on the Dex-Net 4.0 training dataset, which contains 5 million syn-
thetic point clouds, grasps, and reward labels. Dex-Net 4.0 is generated
from 5000 unique 3D object heaps with about 2.5 million data points
each for a vacuum-based suction-cup gripper and a parallel-jaw gripper.
Figure S1 analyzes the features learned by the Dex-Net 4.0 GQ-CNNs.

Physical experiments
We executedmore than 2500 grasp attempts on a physical robot system
with a parallel-jaw and suction-cup gripper to characterize the reliability
of the Dex-Net 4.0 policy on a bin-picking task with 50 novel test
objects. The experiments aimed to evaluate (i) the reliability and range
of the Dex-Net 4.0 policy compared with a set of baselines; (ii) the effect
of training dataset diversity, neural network architecture, and learning
from real data; and (iii) the failure modes of the Dex-Net 4.0 policy.

To analyze performance, we selected a dataset of 50 objects with di-
verse shapes, sizes, andmaterial properties. The dataset, described in the
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Supplementary Materials, includes retail products, groceries, tools, of-
fice supplies, toys, and 3D-printed industrial parts.We separated objects
into two difficulty levels with 25 objects each, illustrated in Fig. 2:

1) Level 1. Prismatic and circular solids (e.g., rectangular prisms,
spheres, and cylinders).

2) Level 2. Common household objects including examples with
flat cardboard backing and clear plastic covers (“blisterpack”), varied
geometry, and masses up to 500 g (the payload of the ABB YuMi).

For each trial, we placed all objects in the bin and allowed the
robot to iteratively attempt grasps until either no objects remained
or a maximum number of attempts were reached. Each grasp was
planned on the basis of a depth image from an overhead 3D camera.
For details on the experimental setup and procedure, see Materials
and Methods. A video of each grasp attempt is available in the Sup-
plementary Materials.

Comparison with baseline policies
We evaluated the Dex-Net 4.0 ambidextrous policy against three base-
lines in five independent trials. To compare with hand-coded methods
used in practice, we implemented a best-effort suction-only policy and
an ambidextrous policy based on geometric heuristics similar to those
used in the Amazon Robotics Challenge (29, 30, 32). To study the im-
portance of the consistent rewardmodel, we also evaluated a policy that

3D Objects

Parallel-Jaw Dataset Suction Dataset

Grasp Action Analytic RewardDepth Image

Grasp Sampling

Parallel-Jaw
Sampling

Suction
Sampling

Selector

Suction GQ-CNN

Depth Image Grasp Action

Amibdextrous Policy

Parallel-Jaw
Policy

Suction
Policy

Parallel-Jaw GQ-CNN

Synthetic Dataset Generation

Policy Learning

 Robot Execution

Camera
Model

Gripper
Model

Fig. 1. Learning ambidextrous grasping policies for UP. (Top) Synthetic training
datasets of depth images, grasps, and rewards are generated froma set of 3D computer-
aided design (CAD) models using analytic models based on physics and domain ran-
domization. Specifically, a data collection policy proposes actions given a simulated
heap of objects, and the synthetic training environment evaluates rewards. Reward is
computed consistently across grippers by considering the ability of a grasp to resist a
given wrench (force and torque) based on the grasp wrench space, or the set of
wrenches that the grasp can resist through contact. (Middle) For each gripper, a policy
is trained by optimizing a deep GQ-CNN to predict the probability of grasp success
given a point cloud over a large training dataset containing millions of synthetic
examples from the training environment. Data points are labeled as successes (blue)
or failures (red) according to the analytic reward metric. (Bottom) The ambidextrous
policy is deployed on the real robot to select a gripper by maximizing grasp quality
using a separate GQ-CNN for each gripper.

Depth
Camera

Vacuum
Generator

Parallel-Jaw
Gripper

Suction Cup
Gripper

Load Cells

Fig. 2. Physical benchmark for evaluating UP policies. (Top) The robot plans a
grasp to iteratively transport each object from the picking bin (green) to a receptacle
(blue) using either a suction-cup or a parallel-jaw gripper. Grasp planning is based on
3D point clouds from an overhead Photoneo PhoXi S industrial depth camera.
(Bottom) Performance is evaluated on two datasets of novel test objects not used
in training. (Left-Bottom) Level 1 objects consist of prismatic and circular solids (e.g.,
boxes and cylinders) spanning groceries, toys, and medicine. (Right-Bottom) Level 2
objects are more challenging, including common objects with clear plastic and varied
geometry, such as products with cardboard blisterpack packaging.
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ranks grasps using Dex-Net 2.0 and 3.0 fine-tuned on simulated heaps
with separate reward metrics for each gripper (see Materials and
Methods for details).

Figure 3 shows the performance on the two object datasets. Dex-
Net 4.0 achieves the highest success rate across all object datasets
with a reliability of 97 and 95% on the level 1 and level 2 objects, re-
spectively. The policy uses the suction cup gripper on 82% of grasps.
The best baseline method has a reliability of 93 and 80%, respective-
ly. Analysis of the number of objects picked versus the number of
attempts suggests that the baseline methods take longer to clear the
last few objects from the bin, sometimes failing to clear several of
the objects.

We detail additionalmetrics for each policy in Table 1, including the
reliability andMPPH of the learned quality functions. The Dex-Net 4.0
policy has the highest reliability on both level 1 and level 2 objects. The
policy has a slightly lower MPPH than the suction heuristic on the
level 1 objects because the heuristic can be evaluatedmore rapidly than
the GQ-CNN.

We analyze the per-object reliability of each policy in fig. S2. The
results suggest that differences in reliability between the policies on the
level 1 objects may be due to specific configurations of objects (e.g., a
thin object leaning against a wall of the bin) rather than the objects
themselves. Figure S3 details the difficulty of each object according
to the reliability across all policies. The most difficult objects were a
box of Q-tips, a bottle of mustard, and the “bialetti,” an espresso filter
in a thin blisterpack package.

To further quantify the range of the Dex-Net 4.0 ambidextrous pol-
icy, we measured the performance of grasping each of the 50 objects
from level 1 and level 2 in isolation in the bin for five attempts each.
Dex-Net 4.0 achieved 98% reliability versus 52 and 94% reliability for
the Dex-Net 2.0 and 3.0 policies, respectively.

Performance with large heaps
To investigate whether heap size affects performance, we benchmarked
the policy on a dataset of 50 test objects combining all objects from the
level 1 and level 2 datasets. Figure 3 displays the results for five
independent trials with each policy. Dex-Net 4.0 has the highest relia-
bility at 90%. In comparison, the performance of the heuristics is rela-
tively unchanged, with success rates near 80%. Some failures ofDex-Net
4.0 are due to attempts to lift objects from underneath others.

Effects of training dataset diversity
We quantified the importance of dataset diversity by training the
GQ-CNNs on three alternative synthetic training datasets:

1) Fewer unique objects: 100 unique 3D objects in 2500
unique heaps.

2) Very few unique heaps: 1664 unique 3D objects in 100
unique heaps.

3) Fewer unique heaps: 1664 unique 3Dobjects in 500 unique heaps.
Figure 3 displays the performance on level 1 and level 2 objects.

The policies have reduced reliability and appeared to be particular-
ly sensitive to the number of unique heaps used in training.

Varying the neural network architecture
We studied whether changes to the neural network architecture affect
the performance of the resulting policy by training on the Dex-Net 4.0
dataset using the “Improved GQ-CNN” architecture (34). As seen in
Fig. 3, the architecture has comparable performance with the standard
GQ-CNN architecture.

Training on physical grasp outcomes
We also explored whether performance can be improved by training on
labeled grasp attempts on a physical system.We used a dataset of more
than 13,000 labeled grasp attempts collected over 6 months of
experiments and demonstrations of the system. About 5000 data points
were labeled by human operators, and the remaining 8000 were labeled
automatically using weight differences measured by load cells.

We trained 10 variants of theDex-Net 4.0 policy on varying ratios of
synthetic and real data using fine-tuning on the fully connected (FC)
layers, including a model trained on only empirical data (see Materials
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Fig. 3. Performance of the Dex-Net 4.0 ambidextrous policy on the bin picking
benchmark. Error bars show the 95% confidence interval on reliability using the
standard error of the mean (SEM). (A) Comparison with three baseline methods on
level 1 and level 2 objects on heaps of 25 novel objects: (i) a hand-coded heuristic for
the suction cup [Heuristic (suction)], (ii) a hand-coded heuristic for selecting between
suction-cup and parallel-jaw grippers [Heuristic (comp)], and (iii) an ambidextrous
policy fine-tuned on simulated heaps from the Dex-Net 2.0 and 3.0 base GQ-CNNs and
rewardmetrics. For reference, the best possible performance (succeeding on every pick
until the bin is cleared) is illustrated with a dashed-dotted black line. (B) Performance
with large heaps of 50 novel objects. (C) Ablation studymeasuring the effect of train-
ing on less diverse datasetswith either fewer uniqueheapsor fewer unique3Dobject
models. (D) Performance of two training alternatives: the improved GQ-CNN (Imp-
GQ-CNN) architecture (34) and fine-tuning (FT) on 13,000 real data points.
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andMethods for details). The best-performing empirically trained pol-
icy had comparable reliability with the original Dex-Net 4.0 policy on
the physical benchmark, as shown in Fig. 3, and did not lead to substan-
tial performance increases.

Adversarial objects
To probe the boundaries of the range of theDex-Net 4.0 policy, we eval-
uated its performance on a third object dataset that contained 25 novel
objects with few accessible and perceptible grasps due to adversarial ge-
ometry, transparency, specularity, and deformability. The results are
illustrated in Fig. 4. Dex-Net 4.0 was still the highest performing policy,
but the reliability was reduced to 63%.

Failures of the Dex-Net 4.0 policy often occur several times in
sequence. To characterize these sequential failures, we explored a
first-order memory-based policy to encourage exploration upon re-
peated failures, a technique that has been used to improve performance
in the Amazon Robotics Challenge (32). The policy uses an instance
recognition system to match object segments to previous failures in a
database (12) and pushes objects to create accessible grasps when none
are available (see Materials and Methods for details on the memory-
based policy). The addition of memory increased the reliability to
80% at 242 MPPH.

DISCUSSION
Experiments suggest that ambidextrous policies trained on Dex-Net
4.0 achieve high reliability on novel objects on a physical robot, with
more than 95% reliability on heaps of 25 novel objects at more than
300MPPH. Dex-Net 4.0 outperforms hand-coded baselines similar to
those used in applications such as the Amazon Robotics Challenge
and also outperforms an ambidextrous policy based on previous ver-
sions of Dex-Net that use separate reward functions for each gripper.
This suggests that learning with consistent reward functions across
grippers can lead to increased reliability on a physical robot.

Experiments also suggest that performance is sensitive to several
factors. Heaps containing more objects lead to decreased reliability be-
cause the policy attempts to lift objects that are occluded by others in the
heap. Performance also depends on the diversity of the training dataset,
with more diverse datasets leading to higher performance on a physical
robot. Last, performance varies based on the test objects, with more
complex geometries andmaterial properties leading to reduced reliabil-
ity. Use of a memory system can help compensate for repeated failures,
increasing reliability on adversarial objects from 63 to 80%.

Benefits of ambidextrous grasping
The experimental results highlight the advantage of using a set of two or
more heterogeneous grippers. Although a policy with only a single suc-
tion cup can achieve high reliability on the level 1 prismatic and circular
objects, performance drops to 80% on the level 2 objects with more
complex geometry. In comparison, the ambidextrous grasping policy
uses the parallel jaws on 20%of grasp attempts to achieve 95% reliability
on the level 2 objects. Furthermore, a consistent reward appears to be
important for learning an ambidextrous policy to reliably decide be-
tween grippers. However, this study only considers a single combina-
tion of grippers. Future research could study applications to new
grippers, such as two-finger underactuated hands or multi–suction-
cup arrays. Future work could also consider extensions of ambidextrous
grasping, such as simultaneous graspingwithmultiple arms or planning
grasps for three or more grippers.

Physics-based reward design
The results of this paper also suggest that analytic quasi-static grasp
quality metrics (35, 36) with domain randomization can be used as a
computationally efficient reward function for learning ambidextrous
grasping policies that are robust to sensor noise and imprecision. This
stands in contrast to past research (5, 6) that has criticized quasi-static
metrics for making strong assumptions and considering only a neces-
sary, not sufficient, condition for dynamic grasp stability. Experiments
suggest that theDex-Net 4.0 policy generalizes to objects with deform-
able surfaces, moving parts, and transparencies that do not satisfy the
assumptions of the analytic metrics. This may be because grasps with
high analytic quality over a diverse range of 3D objects tend to corre-
late with grasp affordances: geometric features of objects that facilitate
grasping, such as handles or flat suctionable surfaces. Further studies
may be necessary to understand why grasps are often dynamically sta-
ble in practice. One hypothesis is that material compliance in the fin-
gertips acts as a passive stability controller. Future research could
investigate whether this result generalizes to additional grippers such
as multifingered (20) or soft hands (37).

Bias-variance tradeoff in dataset collection
Experiments suggest that a policy fine-tuned on 13,000 examples
collected from physical experiments does not substantially improve
theDex-Net 4.0 ambidextrous grasping policy trained on only synthetic
data. This may appear counterintuitive, because the model used to gen-
erate synthetic training data cannot possibly model the exact behavior
of the real-world system and therefore may induce bias (38). This may

Table 1. Detailed performance analysis of the Dex-Net 4.0 and baseline policies on the bin-picking benchmark for five trials on level 1 and level 2
datasets of 25 novel objects each. We report the reliability, MPPH, average precision (AP), total number of grasps attempts (minimum of 125), and total
number of failures.

Level 1 Level 2

Policy Reliability (%) MPPH AP (%) No. of attempts No. of failures Reliability (%) MPPH AP (%) No. of attempts No. of failures

Heuristic (suction) 93 331 95 135 10 80 304 87 156 31

Heuristic (composite) 91 281 93 139 14 76 238 83 168 43

Dex-Net 2 and 3 composite 91 306 93 135 10 76 255 64 168 43

Dex-Net 4.0 97 309 100 129 4 95 312 99 131 6
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relate to the bias-variance tradeoff in machine learning (39). Although
the tradeoff is typically analyzed in terms of the function class, the
results of this paper suggest that the training data distribution is also
relevant. Using a biased model for rapid data collection may improve
the scale and consistency of training datasets, leading to better
performance on a physical system in comparison with methods based
on smaller training datasets with high rates of mislabeled examples. Fu-

ture research could consider novel methods for learning with a combi-
nation of synthetic and real data, such as using analytic models to guide
empirical data collection.

Sequential learning for UP
Finding a policy to maximize MPPH is inherently a sequential learning
problem, in which grasp actions affect future states of the heap. Theory
on imitation learning (40) and reinforcement learning (41) suggests that
policies should take actions that lead to states with high expected future
reward to guarantee high reliability. However, experiments in this paper
suggest that the Dex-Net 4.0 policy performs well on the sequential task
of bin picking, although it was trained with supervised learning to
greedily maximize the probability of success for a single timestep. This
suggests that performance is not particularly sensitive to the sequence of
states of the object heap. This may be due to the random configuration
of objects, which often have one or more exposed graspable surfaces in
every state of the heap. Furthermore, performance may be increased on
difficult objects by augmenting the policy with a memory system that
avoids repeated mistakes.

Application to different sensors and grippers
The Dex-Net 4.0 method for training UP policies could be applied to
other objects, cameras, and grippers by implementing a new dataset
generation distribution and training a new GQ-CNN on samples from
this distribution. For example, objects could be placed in structured con-
figurations, such as packed in boxes or placed on shelves, and camera
intrinsic parameters could be set to model a different sensor. However,
the experiments in this paper are limited in scope. This study only eval-
uates performance on heaps of 50 unique, randomly arranged objects,
which do not represent all possible object geometries. Furthermore, the
hardware benchmark uses only one industrial high-resolution depth
camera positioned directly overhead. The experiments only test a single
parallel-jaw and vacuum-based suction cup gripper. Last, the con-
stant time assumption that relates MPPHmaximization to supervised
learningmay not be applicable to all robot picking systems. For exam-
ple, there may be a time cost for switching grippers due to time spent
physically mounting each tool. Future studies could evaluate per-
formance in new applications with variations in objects, cameras, grip-
pers, and robots.

Opportunities for future research
The most common failure modes of the policy are (i) attempting
to grasp objects that are occluded due to overlap in the heap and
(ii) repeated failures on objects with adversarial geometry and mate-
rial properties. A subset of objects that cannot yet be reliably grasped
with Dex-Net 4.0 is pictured in Fig. 4. One category includes objects
imperceptible to a depth camera, such as those with transparent or
specular surfaces. Another category is characterized by structured
surface variations, such as parallel lines or buttons on a remote, which
can trigger false positives in the suction network. Other classes include
porous objects and objects with loose packaging.

Some failuremodes could be addressed by increasing the diversity of
objects in the training dataset or improving the dataset generation
model. Rendering synthetic color images using domain randomization
(17) could enable the system to grasp transparent, specular, or highly
textured objects. Models of deformation and porosity could be used
to reduce suction failures due to incorrect assumptions of the Dex-
Net 4.0 model. The reward model could also be extended to compute
the wrench set from all contacts between objects instead of only
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Fig. 4. Failure modes of the Dex-Net 4.0 policy. Error bars show the 95% con-
fidence interval on reliability using the SEM. (A) Performance on level 3: a dataset
of 25 novel objects with adversarial geometry and material properties. (B) Evalu-
ation of a first-order memory-based policy for UP that masks regions of the point
cloud with an instance recognition system to avoid repeated failures. (C) Patho-
logical objects that cannot be grasped with Dex-Net 4.0 due to reflectance prop-
erties such as transparency, which affect depth sensing, and material properties
such as porosity and deformability (e.g., loose packaging), which affect the ability
to form a vacuum seal on the object surface.
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considering the grippers and gravity, which could reduce failures due
to object overlap.

Other extensions could substantially increase the reliability and
range. The observed performance increase on the level 3 objects using
a first-order memory system suggests that reinforcement learning
could be used to reduce repeated failures. Furthermore, training on
larger datasets of empirically collected data could reduce the
simulation-to-reality gap. Another way to increase rate is to use
feedback policies that actively regrasp dropped objects based on visual
servoing (10, 28, 42), force sensing (43–45), or tactile sensing (46–49).

MATERIALS AND METHODS
Synthetic training environment
The Dex-Net 4.0 synthetic training environment is based on the
following assumptions: (i) quasi-static physics (e.g., inertial terms
are negligible) with Coulomb friction, (ii) objects are rigid and made
of nonporous material, (iii) the robot has a single overhead depth sen-
sorwith known intrinsics, and (iv) the robot has two end effectors with
known geometry—a vacuum-based gripper consisting of a single disc-
shaped linear-elastic suction-cup and a parallel-jaw gripper (see the
Supplementary Materials for detailed values of parameters). Dex-Net
4.0 uses the POMDP definition described in the following sections.
States
Let x ¼ ðO1;…Om; C;w1;…wmÞ denote the state of the environment
at time t, consisting of a single overhead depth camera, a set of objects,
and a perturbation wrench on each object (e.g., gravity and distur-
bances). Each object stateOi specifies the geometryMi, pose To,i, fric-
tion coefficient gi, and center of mass zi. The camera stateC specifies the
intrinsic parameters I and pose Tc. Each wrench wi is specified as a
vector wi ∈ ℝ6.
Grasp actions
Let us∈ Us denote a suction grasp in 3D space defined by a suction
gripper Gs and a rigid pose of the gripper Ts = (Rs, ts) ∈ SE(3),
where the rotation Rs ∈ SO(3) defines the orientation of the suction
tip and the translation ts ∈ ℝ3 specifies the target location for the
center of the suction disc. Let up∈ Up denote a parallel-jaw grasp in
3D space defined by a parallel-jaw gripper Gp and a rigid pose of the
gripper Tp = (Rp, tp) ∈ SE(3), where the rotation Rp ∈ SO(3) defines
the grasp axis and approach direction and the translation tp ∈ ℝ3

specifies the target center point of the jaws. The set of all possible
grasps is U ¼ Us∪ Up.
Point clouds
Let y ¼ ℝH�W

þ be a 2.5D point cloud represented as a depth image
with height H and width W taken by a camera with known intrin-
sics (50).
State distribution
The initial state distribution x(x0) is the product of distributions
on (26):

1) Object count (m): Poisson distribution with mean l truncat-
ed to [1, 10].

2) Object heap (O): Uniform distribution over 3D object models
and the pose from which each model is dropped into the heap.
Objects are sampled without replacement.

3) Depth camera (C): Uniform distribution over the camera pose
and intrinsic parameters.

4) Coulomb friction (g): Truncated Gaussian constrained to [0, 1].
The initial state is sampled by drawing an object countm, drawing

a subset of m objects, dropping the objects one by one from a fixed

height above the bin, and running dynamic simulation with pybullet
(51) until all objects have about zero velocity. The 3D object models
are sampled from a dataset of 1664 3D objects models selected to re-
flect a broad range of products that are commonly encountered in ap-
plications such as warehousing, manufacturing, or home decluttering.
The dataset was augmented with synthetic blisterpack meshes to re-
flect cardboard-backed products encountered in retail applications.
Augmentation was performed by placing each source mesh in a quasi-
static stable resting pose (52) on an infinite planar work surface and
attaching a thin, flat segment to the mesh at the triangle(s) touching the
work surface.
Observation distribution
Depth image observations are rendered using the open source Python
librarymeshrender using randomization in the camera focal length and
optical center pixel. Nonoisewas added to the rendered images, because
experiments used a high-resolution Photoneo PhoXi S industrial depth
camera.
Reward distribution
Binary rewards occur when a quasi-static equilibrium is feasible be-
tween the grasp and an external wrench perturbation (e.g., due to
gravity or inertia). Let Oi∈xt be an object contacted by the gripper
when executing action ut. Then, we measure grasp success with a
binary-valued metric S(xt, ut) ∈ {0, 1} that evaluates the following
conditions.

1) The gripper geometry in the pose specified by ut is collision free.
2) The gripper contacts exactly one objectOiwhen executing the

grasp parameterized by ut.
3) The grasp can resist a random disturbing force and torque

(wrench)wt =wg + ew on the grasped object withmore than 50% prob-
ability, where wg is the fixed wrench due to gravity and ew is a random
wrench sampled from a zero-mean GaussianNð0; s2wIÞ.

Given an object consisting of a geometryM in poseTo, the gripper g
(geometry and physical parameters such as friction) and grasp pose Tg

are used to determine the contacts c, or set of points and normals be-
tween the fingers and object. This set of contacts is used to compute the
set of wrenches L that the grasp can apply to the object under quasi-
static physics and a point contact model. Specifically, the wrench space
for grasp u using a contact model with m basis wrenches is L(u) =
{w ∈ℝ6|w =G(u)a for some a ∈F(u)}, as defined in (27). The grasp
matrix G(u) ∈ ℝ6 × m is a set of basis wrenches in the object coordinate
frame specifying the set of wrenches that the grasp can apply through
contact via active (e.g., joint torques) and passive (e.g., inertia) means.
The wrench constraint set F(u) ⊆ ℝm limits contact wrench magni-
tudes based on the capabilities of the gripper (1). Last, the grasp wrench
space is used to measure grasp reward based on wrench resistance, or
the ability of the grasp to resist a perturbation wrench w (e.g., due to
gravity) as defined in (27). The grasp reward R is 1 if the probability
of wrench resistance is greater than a threshold over M samples from
the stochastic model.

Data collection policy
The dataset collection policy t(ut|xt, yt) samples a mixture of actions
from the point cloud and from an algorithmic supervisor W(x) that
guides data toward successful grasps. Grasp actions are sampled from
the point cloud using the sampling techniques of (19) and (27) tomodel
the set of actions that the policy will evaluate when tested on real point
clouds. Because this distributionmay contain a very small percentage of
successful actions, we sample actions with high expected reward from
an algorithmic supervisor that evaluates grasps using full-state
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information (26). The supervisor precomputes grasps on a set of known
3D objects in a database [such as in Dex-Net 1.0 (53)] that are robust to
different possible orientations of each object. Because the state of each
object in the heap is not known ahead of time, the supervisor estimates
the probability of success, or quality, for each grasp over a large range of
possible object orientations using the Monte Carlo grasp computation
methods of Dex-Net 2.0 (19) and Dex-Net 3.0 (27). Given a full state of
the heap, the supervisor computes the set of collision-free grasps with
quality above a threshold for each object and then samples a grasp
uniformly at random from the candidate set. Formally, the supervisor-
guided data collection policy is

tðut jxt ; ytÞ ¼
WðxtÞ with prob: e

UnifðUgðytÞÞ otherwise

�

where UgðyÞ is the set of candidate actions sampled from the point
cloud with equal numbers of suction and parallel-jaw grasps. We use
e = 1% to favor actions sampled from the policy’s own action space.

Training details
The Dex-Net 4.0 training dataset contains a large set of labeled actions
for each point cloud to improve the computational efficiency of gener-
ating a single data point. Specifically, data points were generated using a
one–time stepMonte Carlo evaluation of reward for a large set of grasp
actions on eachunique object state. This leads to faster dataset collection
and can eliminate the need for fine-tuning, which is prone to a phenom-
enon known as “catastrophic forgetting” that can lead to unpredictable
failures of the grasping policy (54). Every sampled state from x(x) has
five associated depth images in Dex-Net 4.0, representing 3D point
clouds captured from randomized camera poses and intrinsic optical
parameters. Each image sampled from x(y|x) has a set of labeled actions
for each gripper with associated quality metrics. The intrinsic param-
eters for the virtual cameras were sampled around the nominal values
of a Photoneo PhoXi S industrial depth sensor. Images were converted
to 96 pixel–by–96 pixel training thumbnails translated to move the
grasp center to the thumbnail center pixel and rotated to align the grasp
approach direction or axis with the middle row of pixels for the suction
and parallel-jaw grippers, respectively.

The GQ-CNN architectures are similar to those used inDex-Net 2.0
(19) andDex-Net 3.0 (27) with two primary changes. First, we removed
local response normalization because experiments suggest that it does
not affect training performance. Second, we modified the sizes and
pooling of the following layers : conv1_1 (16 9 by 9 filters, 1× pooling),
conv1_2 (16 5 by 5 filters, 2× pooling), conv2_1 (16 5 by 5 filters, 1×
pooling), conv2_2 (16 5 by 5 filters, 2× pooling), fc3 (128 output neu-
rons), pc1 (16 output neurons), and fc4 (128 output neurons).

We trained each GQ-CNN using stochastic gradient descent with
momentum for 50 epochs using an 80-20 training-to-validation
image-wise split of the Dex-Net 4.0 dataset. We used a learning rate
of 0.01with an exponential decay of 0.95 every 0.5 epochs, amomentum
term of 0.9, and an ℓ2weight regularization of 0.0005.We initialized the
weights of themodel by sampling from a zero-meanGaussian with var-
iance 2

ni
, where ni is the number of inputs to the ith network layer (55).

To augment the dataset during training, we reflected each image about
its vertical and horizontal axes and rotated each image by 180° because
these lead to equivalent grasps. Training took about 24 hours on a single
NVIDIA TITANXp graphics processing unit (GPU). The learned GQ-
CNNs achieved 96 and 98% classification accuracy for the suction cup
and parallel-jaw grippers, respectively, on the held-out validation set.

Implementation of policies
Weused the trainedGQ-CNNs to plan grasps frompoint clouds on a
physical robot with derivative-free optimization to search for the highest-
quality grasp across both grippers. The policy optimizes for the highest-
quality grasp for each gripper separately, using the cross-entropymethod
(CEM) (10, 19, 27, 56), and then selects the grasps with the highest
estimated quality across the grippers. To avoid grasping the bin, we
constrained grasps to the foreground by subtracting out the background
pixels of the bin using a reference depth image of an empty bin. Grasps
were also constrained to be collision free with the bin to avoid damage
to the robot. Given the constraints, CEM sampled a set of initial can-
didate grasps uniformly at random from a point cloud and then itera-
tively resampled grasps from aGaussianmixturemodel fit to the grasps
with the highest estimated quality. For the suction-cup gripper, initial
candidate grasps were sampled by selecting a 3D point and choosing an
approach direction along the inward-facing surface normal. For the
parallel-jaw gripper, initial candidate grasps were sampled by finding
antipodal point pairs using friction cone analysis.

Study design
The objective of the UP benchmark is to measure the rate, reliability,
and range of the Dex-Net 4.0 policy in reference to baseline methods.
The number of trials and objects used in the benchmark was chosen to
maximize the number of unique grasp attempts and baseline policies
that could be evaluated in a fixed time budget. The objects were divided
into categories of 25 objects each based on difficulty to quantify the
range of each policy. Rather than experiment on hundreds of unique
objects, we used a reduced subset of 75 to evaluate a larger number of
grasps for each object given a 3-week time budget for experiments. A
grasp was considered successful if it lifted and transported exactly one
object from the bin to the receptacle. Successes and failures were labeled
by a human operator to avoid labeling errors due to hardware failures or
sensor calibration.

Experimental hardware setup
The experimental workspace is illustrated in Fig. 2. The benchmark
hardware system consists of an ABB YuMi bimanual industrial collab-
orative robot with an overhead Photoneo PhoXi S industrial 3D
scanner, a custom suction gripper, and custom 3D-printed parallel-
jaw fingers with silicone fingertips (57). The suction gripper consists
of a 20-mm-diameter silicone single-bellow suction cup seated in a
3D-printed housing mounted to the end of the right arm. The vacuum
was created by supplying compressed air from a JUN-AIR 18-40 quiet
air compressor to a VacMotion MSV-35 vacuum generator. The
payload of the suction system was about 0.9 kg with a vacuum flow
of about 8 standard cubic feet/min. Objects were grasped from a bin
mounted on top of a set of Loadstar load cells that measured the weight
with a resolution of about 5 g. Each gripper has a separate receptacle to
drop the objects into on the side of the bin.

Experimental procedure
Each experiment consisted of five independent trials in which the bin
was filled with a random configuration of one or more objects and the
robot attempted to pick each object from the bin and transport it to a
receptacle. Before each experiment, the camera position and orientation
relative to the robot weremeasured using a chessboard. In each trial, the
operator set a full dataset of objects in the bin by shaking the objects in a
box, placing the box upside down in the bin, and mixing the bin man-
ually to ensure that objects rested below the rim of the bin. Then, the
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robot iteratively attempted to pick objects from the bin. On each at-
tempt, the grasping policy received as input a point cloud of the objects
in the bin and returned a grasp action for exactly one of the grippers,
consisting of a pose for the gripper relative to the base of the robot.
Then, the ABB RAPID linear motion planner and controller were used
to move to the target pose, establish contact with the object, and drop
the object in the receptacle. The operator labeled the grasp as successful
if the robot lifted and transported the object to the receptacle on the side
of the workspace. The operator also labeled the identity of each grasped
object. A trial was considered complete after all objects were removed,
75 total attempts, or 10 consecutive failures. All experiments ran on a
desktop running Ubuntu 16.04 with a 3.4-GHz Intel Core i7-6700
quad-core central processing unit and an NVIDIA TITAN Xp GPU
[see the Supplementary Materials for a characterization of variables in
the benchmark (58)].

Description of baselines
We compared performance with three baselines:

1) Heuristic (suction). Ranked planar grasps based on the inverse
distance to the centroid of an object (30), where the object centroid
was estimated as the mean pixel of an object instance segmask from a
Euclidean clustering segmentation algorithm from the Point Cloud
Library (PCL) (59). Planarity was determined by evaluating the mean
squared error (MSE) of all 3D points within a sphere with a radius of
10 mm (based on the suction cup size) to the best-fit plane for the
points. Grasps were considered planar if either (i) the MSE was less
than an absolute threshold or (ii) the MSE was within the top 5% of
all candidate grasps. The hyperparameters were hand-coded to op-
timize performance on the physical robot.

2) Heuristic (composite). Ranked grasps planned with the suction
heuristic above and a parallel-jaw heuristic based on antipodality. The
parallel-jaw heuristic ranked antipodal grasps based on the inverse dis-
tance to the estimated centroid of an object, determining antipodality
based on estimated point cloud surface normals. The height of the grip-
per above the bin surface was a constant offset from the highest point
within the region of the grasp. The grasp closest to the estimated object
centroid across both grippers was selected for execution.

3) Dex-Net 2.0 and 3.0 composite. Ranked grasps based on the
estimated quality from separate GQ-CNNs trained to estimate the
quality of parallel-jaw and suction-cup grasps in clutter. The GQ-CNNs
were trained by fine-tuning the Dex-Net 2.0 and 3.0 base networks
on simulated heaps with imitation learning from an algorithmic su-
pervisor (26).

Details of empirical training
We train 10 variants of the Dex-Net 4.0 ambidextrous grasping policy
on a dataset of 13,000 real grasp attempts: training from scratch and
fine-tuning either all FC layers or only the last FC layer (fc5) on vary-
ing ratios of real to simulated data: 1:0, 1:1, 1:10, and 1:100. Each var-
iant was evaluated on the adversarial level 3 objects on the physical
robot, and the highest performing policy was the Dex-Net 4.0 policy
with the last FC layer fine-tuned on the 1:10 combined real and syn-
thetic dataset.

Details of memory system
To avoid repeated grasp failures, we implemented a first-ordermemory
system that associates regions of the point cloud with past failures. A
grasp was considered a failure if the weight reading from the load cells
changed less than 5 g after a grasp attempt. When a failure occurred,

the point cloud was segmented using PCL (59), and the segment
corresponding to the grasped object was associated with a region in
a grayscale image. The segmented image patch was featurized using
the VGG-16 network and stored in a failure database corresponding
to the gripper. On the next grasp attempt, the point cloud segments
were matched to the failure database using the VGG-16 featurization.
If a match was found, the region in the current image was marked as
forbidden to the grasp sampler for the Dex-Net 4.0 policy. Further-
more, if more than three consecutive failures occurred, then the
memory system rejected the planned grasp and used a pushing policy
(60) to perturb the objects in the bin.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/26/eaau4984/DC1
Text
Fig. S1. Analysis of features learned by the GQ-CNNs from the ambidextrous grasping policy.
Fig. S2. Per-object reliability of each policy on each test object.
Fig. S3. Difficulty of each object from the test object datasets characterized by the overall
reliability averaged across methods.
Movie S1. Summary.
Raw data, code for data analysis, videos, and listing of objects used in experiments (.zip file)
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Learning agile and dynamic motor skills for
legged robots
Jemin Hwangbo1*, Joonho Lee1, Alexey Dosovitskiy2, Dario Bellicoso1, Vassilios Tsounis1,
Vladlen Koltun3, Marco Hutter1

Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot
be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning,
which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far,
reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably
simple examples have been deployed on real systems. The primary reason is that training with real robots,
particularly with dynamically balancing systems, is complicated and expensive. In the present work, we intro-
duce a method for training a neural network policy in simulation and transferring it to a state-of-the-art legged
system, thereby leveraging fast, automated, and cost-effective data generation schemes. The approach is ap-
plied to the ANYmal robot, a sophisticated medium-dog–sized quadrupedal system. Using policies trained in
simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with
prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity
commands, running faster than before, and recovering from falling even in complex configurations.

INTRODUCTION
Legged robotic systems are attractive alternatives to tracked/wheeled
robots for applications with rough terrain and complex cluttered
environments. The freedom to choose contact points with the envi-
ronment enables them to overcome obstacles comparable to their leg
length.With such capabilities, legged robots may one day rescue people
in forests and mountains, climb stairs to carry payloads in construction
sites, inspect unstructured underground tunnels, and explore other
planets. Legged systems have the potential to perform any physical
activity humans and animals are capable of.

A variety of legged systems are beingdeveloped in the effort to take us
closer to this vision of the future. BostonDynamics introduced a series of
robots equipped with hydraulic actuators (1, 2). These have advantages
in operation because they are powered by conventional fuel with high
energy density. However, systems of this type cannot be scaled down
(usually >40 kg) and generate smoke andnoise, limiting them to outdoor
environments. Another family of legged systems is equippedwith electric
actuators,which are better suited to indoor environments.Massachusetts
Institute ofTechnology’s (MIT)Cheetah (3) is one of themost promising
legged systems of this kind. It is a fast, efficient, and powerful quadru-
pedal robot designed with advanced actuation technology. However, it
is a research platform optimized mainly for speed and has not been
thoroughly evaluated with respect to battery life, turning capability,
mechanical robustness, and outdoor applicability. Boston Dynamics’
newly introduced robot, SpotMini, is also driven by electric actuators
and is designed for both indoor and outdoor applications. Although de-
tails have not been disclosed, public demonstrations andmedia releases
(4) are convincing evidence of its applicability to real-world operation.
The platform used in this work, ANYmal (5), is another promising
quadrupedal robot powered by electric actuators. Its bioinspired actua-
tor designmakes it robust against impactwhile allowing accurate torque
measurement at the joints. However, the complicated actuator design
increases cost and compromises the power output of the robot.

Designing control algorithms for these hardware platforms re-
mains exceptionally challenging. From the control perspective, these
robots are high-dimensional and nonsmooth systems with many
physical constraints. The contact points change over the course of
time and depending on the maneuver being executed and, therefore,
cannot be prespecified. Analytical models of the robots are often in-
accurate and cause uncertainties in the dynamics. A complex sensor
suite and multiple layers of software bring noise and delays to infor-
mation transfer. Conventional control theories are often insufficient
to deal with these problems effectively. Specialized control methods
developed to tackle this complex problem typically require a lengthy
design process and arduous parameter tuning.

The most popular approach to controlling physical legged systems
is modular controller design. This method breaks the control problem
down into smaller submodules that are largely decoupled and there-
fore easier to manage. Eachmodule is based on template dynamics (6)
or heuristics and generates reference values for the next module. For
example, some popular approaches (7–10) use a template-dynamics-
based control module that approximates the robot as a point mass
with a massless limb to compute the next foothold position. Given
the foothold positions, the next module computes a parameterized
trajectory for the foot to follow. The last module tracks the trajec-
tory with a simple proportional-integral-derivative (PID) controller.
Because the outputs of these modules are physical quantities, such as
body height or foot trajectory, each module can be individually
hand-tuned. Approaches of this type have achieved impressive results.
Kalakrishnan et al. (11) demonstrated robust locomotion over chal-
lenging terrainwith a quadrupedal robot: To date, this remains the state
of the art for rough-terrain locomotion. Recently, Bellicoso et al. (12)
demonstrated dynamic gaits, smooth transitions between them, and
agile outdoor locomotion with a similar controller design. Yet, despite
their attractive properties, modular designs have limitations. First,
limited detail in the modeling constrains the model’s accuracy. This
inherent drawback is typically mitigated by limiting the operational
state domain of each module to a small region where the approxima-
tions are valid. In practice, such constraints lead to substantial compro-
mises in performance, such as slow acceleration, fixed upright pose of
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the body, and limited velocity of the limbs. Second, the design of
modular controllers is extremely laborious. Highly trained engineers
spend months to develop a controller and to arduously hand-tune
the control parameters per module for every new robot or even for
every newmaneuver. For example, running and climbing controllers
of this kind can have markedly different architectures and are de-
signed and tuned separately.

More recently, trajectory optimization approaches have been pro-
posed to mitigate the aforementioned problems. In these methods,
the controller is separated into two modules: planning and tracking.
The planning module uses rigid-body dynamics and numerical op-
timization to compute an optimal path that the robot should follow
to reach the desired goal. The tracking module is then used to follow
the path. In general, trajectory optimization for a complex rigid-
body model with many unspecified contact points is beyond the capa-
bilities of current optimization techniques. Therefore, in practice, a
series of approximations are used to reduce complexity. Somemethods
approximate the contact dynamics to be smooth (13, 14), making the
dynamics differentiable. Notably, Neunert et al. (13) demonstrated
that suchmethods can be used to control a physical quadrupedal robot.
Other methods (15) prespecify the contact timings and solve for
sections of trajectories where the dynamics remain smooth. A few
methods aim to solve this problem with little to no approximation
(16, 17). These methods can discover a gait pattern (i.e., contact
sequence) with hard contact models and have demonstrated auto-
matic motion generation for two-dimensional (2D) robotic systems,
but, like any other trajectory optimization approach, the possible con-
tact points are specified a priori. Although more automated than
modular designs, the existing optimization methods perform worse
than state-of-the-art modular controllers. The primary issue is that
numerical trajectory optimization remains challenging, requires
tuning, and inmany cases, can produce suboptimal solutions. Besides,
optimization has to be performed at execution time on the robot,
making these methods computationally expensive. This problem is
often solved by reducing precision or running the optimization on a
powerful external machine, but both solutions introduce their own
limitations. Furthermore, the system still consists of two independent
modules that do not adapt to each other’s performance characteristics.
This necessitates hand-tuning of the tracker; yet, accurately tracking
fast motion by an underactuated system with many unexpected
contacts is nearly impossible.

Data-driven methods, such as reinforcement learning (RL), prom-
ise to overcome the limitations of prior model-based approaches by
learning effective controllers directly from experience. The idea of
RL is to collect data by trial and error and automatically tune the con-
troller to optimize the given cost (or reward) function representing the
task. This process is fully automated and can optimize the controller
end to end, from sensor readings to low-level control signals, thereby
allowing for highly agile and efficient controllers. On the down side,
RL typically requires prohibitively long interaction with the system to
learn complex skills—typically weeks or months of real-time execu-
tion (18). Moreover, over the course of training, the controller may
exhibit sudden and chaotic behavior, leading to logistical complica-
tions and safety concerns. Direct application of learning methods to
physical legged systems is therefore complicated and has only been
demonstrated on relatively simple and stable platforms (19) or in a
limited context (20).

Because of the difficulties of training on physical systems, most
advanced applications of RL to legged locomotion are restricted to

simulation. Recent innovations in RL make it possible to train loco-
motion policies for complex legged models. Levine and Koltun (21)
combined learning and trajectory optimization to train a locomotion
controller for a simulated 2D walker. Schulman et al. (22) trained a
locomotion policy for a similar 2Dwalker with an actor-criticmethod.
More recent work obtained full 3D locomotion policies (23–26). In
these papers, animated characters achieve remarkable motor skills
in simulation.

Given the achievements of RL in simulated environments, a natural
question is whether these learned policies can be deployed on physical
systems.Unfortunately, such simulation-to-reality transfer is hindered
by the reality gap—the discrepancy between simulation and the real
system in terms of dynamics and perception. There are two general
approaches to bridging the reality gap. The first is to improve simu-
lation fidelity either analytically or in a data-driven way; the latter is
also known as system identification (27–32). The second approach is
to accept the imperfections of simulation and aim to make the con-
troller robust to variations in system properties, thereby allowing
for better transfer. This robustness can be achieved by randomizing
various aspects of the simulation: using a stochastic policy (33), ran-
domizing the dynamics (34–37), adding noise to the observations
(38), and perturbing the system with random disturbances. Both
approaches lead to improved transfer; however, the former is cum-
bersome and often impossible, and the latter can compromise the
performance of the policy. Therefore, in practice, both are typically
used in conjunction. For instance, the recent work of Tan et al. (35)
demonstrated successful sim-to-real transfer of locomotion policies
on a quadrupedal system called Minitaur via the use of an accurate
analytical actuator model and dynamic randomization. Although it
achieved impressive results, the method of Tan et al. (35) crucially
depended on accurate analytical modeling of the actuators, which is
possible for direct-drive actuators (as used in Minitaur) but not for
more complex actuators, such as servomotors, series elastic actuators
(SEAs), and hydraulic cylinders, which are commonly used in larger
legged systems.

In this work, we developed a practical methodology for autono-
mously learning and transferring agile and dynamic motor skills for
complex and large legged systems, such as the ANYmal robot (5).
Compared with the robots used in (35), ANYmal has a much larger
leg length relative to footprint, making it more dynamic, less statically
stable, and therefore more difficult to control. In addition, it features
12 SEAs, which are difficult to control and for which sufficiently ac-
curate analytical models do not exist. Gehring et al. (39) have at-
tempted analytical modeling of an SEA, but, as we will show, their
model is insufficiently accurate for training a high-performance loco-
motion controller.

Our approach is summarized in Fig. 1. Our key insight on the
simulation side is that efficiency and realism can be achieved by
combining classical models representing well-known articulated sys-
tem and contact dynamics with learning methods that can handle
complex actuation (Fig. 1, steps 1 and 2). The rigid links of ANYmal,
connected through high-quality ball bearings, closely resemble an
idealized multibody system that can be modeled with well-known
physical principles (40). However, this analytical model does not in-
clude the set of mechanisms that map the actuator commands to the
generalized forces acting on the rigid-body system: the actuator dynam-
ics, the delays in control signals introduced by multiple hardware and
software layers, the low-level controller dynamics, and compliance/
damping at the joints. Because these mechanisms are nearly impossible
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to model accurately, we learned the corresponding mapping in an end-
to-end manner—from commanded actions to the resulting torques—
with a deep network. We learned this “actuator net” on the physical
system via self-supervised learning and used it in the simulation loop
to model each of the 12 joints of ANYmal. Crucially, the full hybrid
simulator, including a rigid-body simulation and the actuator nets,
runs at nearly 500,000 time steps per second, which allows the simu-
lation to run roughly a thousand times faster than real time. About
half of the run time was used to evaluate the actuator nets, and the
remaining computations were efficiently performed via our in-house
simulator, which exploits the fast contact solver of Hwangbo et al.
(41), efficient recursive algorithms for computing dynamic proper-
ties of articulated systems (composite rigid-body algorithm and re-
cursive Newton-Euler algorithm) (40), and a fast collision-detection
library (42). Thanks to efficient software implementations, we did
not need any special computing hardware, such as powerful servers
with multiple central processing units (CPUs) and graphics process-
ing units (GPUs), for training. All training sessions presented in this
paper were done on a personal computer with one CPU and one
GPU, and none lasted more than 11 hours.

We used the hybrid simulator for training controllers via RL (Fig. 1,
step 3). The controller is represented by a multilayer perceptron (MLP)
that took as input the history of the robot’s states and produced as
output the joint position target. Specifying different reward functions
for RL yielded controllers for different tasks of interest.

The trained controller was then directly deployed on the physical
system (Fig. 1, step 4). Unlike the existing model-based control
approaches, our proposed method is computationally efficient at
run time. Inference of the simple network used in this work took
25 ms on a single CPU thread, which corresponds to about 0.1% of
the available onboard computational resources on the robot used in
the experiments. This is in contrast tomodel-based control approaches
that often require an external computer to operate at sufficient fre-
quency (13, 15). Also, by simply swapping the network parameter
set, the learned controller manifested vastly different behaviors. Al-
though these behaviors were trained separately, they share the same
code base: Only the high-level task description changed depending
on the behavior. In contrast, most of the existing controllers are
task-specific and have to be developed nearly from scratch for every
new maneuver.

We applied the presented methodology to learning several complex
motor skills that were deployed on the physical quadruped. First, the
controller enabled theANYmal robot to follow base velocity commands
more accurately and energy-efficiently than the best previously exist-
ing controller running on the same hardware. Second, the controller
made the robot run faster, breaking the previous speed record of
ANYmal by 25%. The controller could operate at the limits of the
hardware and push performance to the maximum. Third, we learned
a controller for dynamic recovery from a fall. This maneuver is excep-
tionally challenging for existing methods because it involves multiple

Fig. 1. Creating a control policy. In the first step, we identify the physical parameters of the robot and estimate uncertainties in the identification. In the second step,
we train an actuator net that models complex actuator/software dynamics. In the third step, we train a control policy using the models produced in the first two steps.
In the fourth step, we deploy the trained policy directly on the physical system.
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unspecified internal and external contacts. It requires fine coordina-
tion of actions across all limbs and must use momentum to dynami-
cally flip the robot. To the best of our knowledge, such recovery skill
has not been achieved on a quadruped of comparable complexity.

RESULTS
Movie 1 summarizes the results and the method of this work. In the
following subsections, we describe the results in detail.

Command-conditioned locomotion
In most practical scenarios, the motion of a robot is guided by high-
level navigation commands, such as the desired direction and the
speed of motion. These commands can be provided, for instance,
by an upper-level planning algorithm or by a user via teleoperation.
Using our method, we trained a locomotion policy that could follow
such commands at runtime, adapting the gait as needed, with no prior
knowledge of command sequence and timing. A command consists of
three components: forward velocity, lateral velocity, and yaw rate.

We first qualitatively evaluated this learned locomotion policy by
giving random commands using a joystick. In addition, the robot was
disturbed during the experiment by multiple external pushes to the
main body. The resulting behavior is shown in movie S1. The video
shows about 40 s of robust command following. We also tested the
policy for 5 min without a single failure, which manifests the robust-
ness of the learned policy.

The trained policy performed stably within the command distribu-
tion that it was trained on, with any random combination of the
command velocities. Although the forward command velocity was
sampled fromU(−1, 1)m/s during training, the trained policy reached
1.2 m/s of measured forward velocity reliably when the forward
command velocity was set slightly higher (1.23 m/s), and the other
command velocities were set to zero.

Next, we quantitatively evaluated this learned locomotion policy by
driving the robot with randomly sampled commands. The commands
were sampled as described in section S2. The robot received a new
command every 2 s, and the command was held constant in between.
The test was performed for 30 s, and a total of 15 random transitions
were performed, including the initial transition from zero velocity.
The base velocity plot is shown in fig. S1. The average linear velocity
error was 0.143 m/s, and the average yaw rate error was 0.174 rad/s.

We next compared the learned controller with the best-performing
existing locomotion controller available for ANYmal (12). For this
experiment, we used a flying trot gait pattern (trot with full flight
phase) because this is the only gait that stably reached 1.0m/s forward
velocity. We used the same velocity command profile, which resulted
in the base velocity shown in fig. S2. The average linear velocity error

was 0.231 m/s, and the average yaw rate error was 0.278 rad/s. Given
the same command profile, the tracking error of the model-based
controller is about 95% higher than our learned controller with re-
spect to linear velocity and about 60% higher with respect to yaw rate.
In addition, our learned controller used less torque (8.23 N·m versus
11.7 N·m) and less mechanical power (78.1 W versus 97.3 W) on av-
erage.Movie S2 illustrates the experiments for both the learned policy
and the model-based policy.

The control performance was also evaluated and compared in
forward running. To this end, we sent a step input of four different
speed commands (0.25, 0.5, 0.75, and 1.0 m/s) for 4.5 s each. The
results, including a comparison to the prior method (12), are shown
in Fig. 2. Figure 2A shows the flying trot pattern discovered by the
learned controller. Note that this flight phase disappeared for low-
velocity commands, andANYmal displayed walking trot as shown in
movie S1. Even without specifying the gait pattern, the learned policy
manifested trot, a gait pattern that is commonly observed in quad-
rupedal animals. Figure 2B shows the velocity tracking accuracy of
the policy both in simulation and on the real robot. Note that the
oscillation of the observed velocity around the commanded one is
a well-known phenomenon in legged systems, including humans
(43). In terms of average velocity, the learned policy has an error
of 2.2% on the real robot, 1.1% higher than in a simulation.

Figure 2 (C to E) compares the performance of the learned con-
troller with the approach of Bellicoso et al. (12) in terms of accuracy
and efficiency. We used two gaits from (12) for the comparison:
flying trot, the only gait that can achieve 1 m/s, and dynamic lateral
walk, the most efficient gait. First, we compared the velocity error at
various commanded velocities in Fig. 2C. The learned controller is
more accurate than the prior controller for all commanded velocities:
by a factor of 1.5 to 2.5 compared with the dynamic lateral walk and
by a factor of 5 to 7 compared with the flying trot, depending on the
speed. Figure 2D shows themechanical power output as a function of
the measured velocity. The learned controller performed similarly to
the dynamic lateral walk andmore efficiently than the flying trot by a
factor of 1.2 to 2.5, depending on the speed. Last, Fig. 2E plots the
average measured torque magnitude against the measured velocity.
The learned controller is more efficient in this respect than both prior
gaits, using 23 to 36% less torque depending on the velocity. This large
improvement in efficiency is possible because the learned controller
walks with a nominal knee posture that is 10° to 15° straighter than
prior gaits. The nominal posture cannot be adjusted to this level in
the approach of Bellicoso et al. because this would markedly increase
the rate of failure (falling).

Next, we compared our method with ablated alternatives: training
with an ideal actuator model and training with an analytical actuator
model. The ideal actuator model assumes that all controllers and
hardware inside the actuator have infinite bandwidth and zero latency.
The analytical model uses the actual controller code running on the
actuator in conjunction with identified dynamic parameters from ex-
periments and computer-aided design (CAD) tools. Some parameters,
such as latency, damping, and friction, were hand-tuned to increase
the accuracy of predicted torque in relation to data obtained from
experiments. The policy training procedure for eachmethodwas iden-
tical to ours.

Neither alternative method could make a single step without falling.
The resulting motions are shown in movies S3 and S4. We observed
violent shaking of the limbs, probably due to not accounting for various
delays properly. Although the analyticalmodel containedmultiple delay

Movie 1. Summary of the results and the method.
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sources that were tuned using real data, accurately modeling all delay
sources is complicated when the actuator has limited bandwidth. SEA
mechanisms generate amplitude-dependent mechanical response time,
and manual tuning of latency parameters becomes challenging. We
tuned the analytical model formore than a week withoutmuch success.

High-speed locomotion
In the previous section, we evaluated the generality and robustness of
the learned controller. Here, we focus on operating close to the limits
of the hardware to reach the highest possible speed. The notion of
high speed is, in general, hardware dependent. There are some legged
robots that are exceptional in this regard. Park et al. (44) demonstrated
full 3D legged locomotion at over 5.0 m/s with the MIT Cheetah. The
Boston Dynamics WildCat has been reported to reach 8.5 m/s (45).
These robots are designed to run as fast as possible, whereas ANYmal
is designed to be robust, reliable, and versatile. The current speed
record on ANYmal is 1.2 m/s and was set using the flying trot gait

(12). Although this may not seem high, it is 50% faster than the pre-
vious speed record on the platform (39). Such velocities are challeng-
ing to reach via conventional controller design while respecting all
limits of the hardware.

We used the presented methodology to train a high-speed loco-
motion controller. This controller was tested on the physical system
by slowly increasing the commanded velocity to 1.6 m/s and lower-
ing it to zero after 10 m. The forward speed and joint velocities/
torques are shown in Fig. 3. ANYmal reached 1.58m/s in simulation
and 1.5 m/s on the physical system when the command was set to
1.6 m/s. All speed values were computed by averaging over at least
three gait cycles. The controller used both the maximum torque
(40N·m) and themaximum joint velocities (12 rad/s) on the physical
system (Fig. 3, B and C). This shows that the learned policy can ex-
ploit the full capacity of the hardware to achieve the goal. For most
existing methods, planning while accounting for the limitations of
the hardware is very challenging, and executing the plan on the real

Fig. 2. Quantitative evaluation of the learned locomotion controller. (A) The discovered gait pattern for 1.0 m/s forward velocity command. LF, left front leg; RF,
right front leg; LH, left hind leg; RH, right hind leg. (B) The accuracy of the base velocity tracking with our approach. (C to E) Comparison of the learned controller
against the best existing controller, in terms of power efficiency, velocity error, and torque magnitude, given forward velocity commands of 0.25, 0.5, 0.75, and 1.0 m/s.
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system reliably is harder still. Even state-of-the-art methods (12, 46)
cannot limit the actuation during planning owing to limitations of
their planning module. Modules in their controllers are not aware of
the constraints in the later stages; consequently, their outputs may not
be realizable on the physical system.

The gait pattern produced by our learned high-speed controller
(Fig. 3D) is distinct from the one exhibited by the command-
conditioned locomotion controller. It is close to a flying trot but with
notably longer flight phase and asymmetric flight phase duration. This
is not a commonly observed gait pattern in nature, andwe suspect that
it is among multiple near-optimal solution modes for this task. The
behavior of the policy is illustrated in movie S5.

Recovery from a fall
Legged systems change contact points as theymove and are thus prone
to falling. If a legged robot falls and cannot autonomously restore itself
to an upright configuration, then a human operator must intervene.
Autonomous recovery after a fall is thus highly desirable. One possi-
bility is to represent recovery behaviors as well-tuned joint trajectories
that can simply be replayed—an approach that has been taken in some
commercial systems (47). Such trajectories have required laborious
manual tuning. They also take a very long time to execute because they
do not take dynamics into account in the motion plan or the control.
Some robots are designed such that recovery is either unnecessary or
trivial (48, 49). However, such a design may not be possible for bigger
and more complex machines. Morimoto et al. (50) demonstrated that
a standing-up motion can be learned on a real robot. However, a
simple three-link chain was used for demonstration, and the method
has not been scaled to realistic systems.

Fast and flexible recovery after a fall, as seen in animals, requires
dynamic motion with multiple unspecified contact points. The col-
lision model for our quadruped is highly complicated: It consists of
41 collision bodies, such as boxes, cylinders, and spheres (Fig. 1,
step 1). Planning a feasible trajectory for such a model is extreme-
ly complicated. Even simulating such a system is challenging be-
cause there are many internal contacts. We used the approach of
Hwangbo et al. (41) owing to its ability to handle such simulation
in numerically stable fashion.

Using the presentedmethodology, we trained a recovery policy and
tested it on the real robot. We placed ANYmal in nine random con-
figurations and activated the controller as shown in movie S6. Many
challenging configurations were tested, including a nearly entirely
upside-down configuration (pose 8) and more complex contact sce-
narios where ANYmal was resting on its own legs (poses 2 and 4). In
all tests, ANYmal successfully flipped itself upright. An example mo-
tion is shown in Fig. 4. These agile and dynamic behaviors demon-
strate that our approach is able to learn performant controllers for
tasks that are difficult or impossible to address with prior methods.

DISCUSSION
The learning-based control approach presented in this paper achieved
a high level of locomotion skill based purely on training in simulation
and without tedious tuning on the physical robot. The system achieved
more precise and energy-efficientmotions than the prior state of the art.
It outperformed the previous speed record by 25% and learned to
consistently restore the robot to an operational configuration by dy-
namically rolling over its body.

Existing controllers are created by engineers. A model with ade-
quate complexity has to be designed, and a control strategy has to
be developed, tested, and tuned. This process typically takes months
and has to be repeated for every distinct maneuver. In contrast, the
simulation and learning framework used in this work are applicable
to any rigid-body system. For applications to new tasks, our method

Fig. 3. Evaluation of the trained policy for high-speed locomotion. (A) Forward
velocity of ANYmal. (B) Joint velocities. (C) Joint torques. (D) Gait pattern.
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only requires a task description, which consists of the cost function,
the initial state distribution, and randomization.

In our method, learned actuator dynamics effectively reduce the
reality gap, whereas stochastic modeling guides the policy to be suf-
ficiently conservative. The recovery task was successful on the very
first attempt on the hardware. We then further improved the success
rate to 100% by relaxing the joint velocity constraints. The results
presented here were obtained on the second day of experiments on
the physical system. In contrast, because of many model abstraction
layers, which are necessary to make the computation tractable, prior
methods often cannot exploit a sophisticated actuatormodel in control-
ling a complex legged system. Consequently, they often compromise
performance or rely on well-tuned low-level controllers. For example,
low-level controllers (e.g., the tracking controllers and the whole-body
controller) have to be extensively tuned in the tested model-based con-
troller (12) to mitigate imperfections of the actuators.

The learned policies are also robust to changes in hardware, such as
those caused by wear and tear. All control policies have been tested for
more than 3months on the real robotwithout anymodification.Within
this period, the robot was heavily used withmany controllers, including
the ones presented here. Many hardware changes were introduced as
well: different robot configurations, which roughly contribute 2.0 kg
to the total weight, and a new drivewhich has a spring three times stiffer
than the original one. All of the policies presented in this paper have
performed robustly even under such conditions.

In terms of computational cost, our approach has an advantage
over priormethods. Although it requires several hours of trainingwith
an ordinary desktop PC, the inference on the robot requires less than
25 ms using a single CPU thread. Our method shifts nearly all com-
putational costs to the training phase, where we can use external
computational resources. Prior controllers often require two orders
of magnitude more onboard computation. These demanding require-
ments limit the level of sophistication and thus the overall performance
of the controller.

Using a policy network that directly outputs a joint-level command
brings another advantage to our method. In contrast to many prior

methods that have numerical issues at singular configurations of
the robot, our policies can be evaluated at any configuration. Conse-
quently, our method is free from using ad hoc methods (e.g., branch-
ing conditions) in resolving such issues.

Although our approach allows for largely automated discovery of
performant policies, it still requires some human expertise. A cost
function and an initial state distribution have to be designed and tuned
for each task. For a person with good understanding of both the task
and RL, this process takes about 2 days for the locomotion policies
presented in this work. Although this is still substantial amount of
time, all the necessary tuning happens in simulation. Therefore, the
development time will keep decreasing as computational technology
evolves. In contrast, the prior controllers that use model abstractions
inevitably require more development time and often extensive tuning
on the real systems. Developing the recovery policy took about a week
largely owing to the fact that some safety concerns (i.e., high impacts,
fast swing legs, collisions with fragile components, etc.) are not very
intuitive to embed in a cost function.Achieving a stand-up behaviorwas
as simple as other tasks. However, for achieving the safe and robust be-
haviors that are demonstrated in this work, the cost function had to be
tweaked several times. Longer development time was also attributed to
the fact that it was trained by a person who had no previous experience
with any real robot.

To train policies for a new robot, necessary modeling effort has to
be made. This includes rigid-body modeling using the CAD model
and actuator modeling using an actuator network. The former is often
automated by modern CAD software, and the latter is easy if all nec-
essary software/hardware infrastructures (e.g., logging, regression, and
torquemeasurements) are in place. If not, it will also take a substantial
portion of the development time. In addition, there are a few actuation
types that manifest coupled dynamics (e.g., hydraulic actuators sharing
a single accumulator). Learning actuators independently might not re-
sult in a sufficient accuracy for these systems. With a good understand-
ing on the actuator dynamics, an appropriate history configuration
can be estimated a priori and tuned further with respect to the val-
idation error. In contrast, constructing an analytical actuator model

Fig. 4. A learned recovery controller deployed on the real robot. The learned policy successfully recovers from a random initial configuration in less than 3 s.
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for ANYmal takes at least 3 weeks even if there is a very similar model
studied in literature (39). The model also has many more parameters,
many of which cannot be accurately obtained from measurements or
the data sheet. Consequently, it requires more tuning than construct-
ing an actuator network.

Another limitation of our approach was observed over the course
of this study. A single neural network trained in one session manifests
single-faceted behaviors that do not generalize across multiple tasks.
Introducing hierarchical structure in the policy network can remedy
this and is a promising avenue for future work (25).

The presented approach is not fundamentally limited to known
and simple environments. We see the results presented in this paper

as a step toward comprehensive locomotion controllers for resilient
and versatile legged robots.

MATERIALS AND METHODS
This section describes in detail the simulation environment, the train-
ing process, and the deployment on the physical system. An overview
of our training method is shown in Fig. 5. The training loop proceeds
as follows: The rigid-body simulator outputs the next state of the robot
given the joint torques and the current state. The joint velocity and the
position error are buffered in a joint state history within a finite time
window. The control policy, implemented by anMLPwith two hidden

layers, maps the observation of the
current state and the joint state his-
tory to the joint position targets. Last,
the actuator network maps the joint
state history and the joint position
targets to 12 joint torque values,
and the loop continues. In what fol-
lows, we describe each component
in detail.

Modeling rigid-body dynamics
To efficiently train a complex policy
within a reasonable time and trans-
fer it to the real world, we needed a
simulation platform that is both fast
and accurate. One of the biggest
challenges with walking robots is
the dynamics at intermittent con-
tacts. To this end, we used the rigid-
body contact solver presented in our
previous work (41). This contact
solver uses a hard contact model
that fully respects the Coulomb
friction cone constraint. Thismodel-
ing technique can accurately capture
the true dynamics of a set of rigid
bodies making hard contacts with
their environment. The solver is
not only accurate but also fast, gen-
erating about 900,000 time steps per
second for the simulated quadruped
on an ordinary desktop machine.

The inertial properties of the
links were estimated from the CAD
model.Weexpectedup to about 20%
error in the estimation due to un-
modeled cabling and electronics. To
account for such modeling inaccu-
racies, we robustified the policy by
training with 30 different ANYmal
modelswith stochastically sampled
inertial properties. The center of
mass positions, the masses of links,
and joint positions were random-
ized by adding a noise sampled
from U(−2, 2) cm, U(−15, 15)%,
and U(−2, 2) cm, respectively.

Fig. 5. Training control policies in simulation. The policy network maps the current observation and the joint state
history to the joint position targets. The actuator network maps the joint state history to the joint torque, which is used
in rigid-body simulation. The state of the robot consists of the generalized coordinate q and the generalized velocity u. The
state of a joint consists of the joint velocity

:
f and the joint position error, which is the current position f subtracted from

the joint position target f*.
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Modeling the actuation
Actuators are an essential part of legged systems. Fast, powerful,
lightweight, and high-accuracy actuators typically translate to dynamic,
versatile, and agile robots. Most legged systems are driven by hydraulic
actuators (51) or electric motors with gears (3), and some even include
dedicated mechanical compliance (5, 52). These actuators have one
thing in common: They are extremely difficult to model accurately.
Their dynamics involve nonlinear and nonsmooth dissipation, and
they contain cascaded feedback loops and a number of internal states
that are not even directly observable. Gehring et al. (39) extensively
studied SEA actuator modeling. The model of Gehring et al. includes
nearly 100 parameters that have to be estimated from experiments or
assumed to be correct from data sheets. This process is error prone
and time consuming. In addition,manymanufacturers do not provide
sufficiently detailed descriptions of their products; consequently, an
analytical model may not be feasible.

To this end, we used supervised learning to obtain an action-to-
torque relationship that included all software and hardware dynam-
ics within one control loop. More precisely, we trained an actuator
network that output an estimated torque at the joints given a history
of position errors (the actual position subtracted from the commanded
position) and velocities. In this work, we assumed that the dynamics
of the actuators are independent to each other such thatwe could learn
a model for each actuator separately. This assumption might not be
valid for other types of actuation. For example, hydraulic actuators
with a single common accumulatormightmanifest coupled dynamics,
and a single large network, representing multiple actuators together,
might be more desirable.

The states of the actuators are only partially observable because the
internal states of the actuators (e.g., states of the internal controllers
and motor velocity) cannot be measured directly. We assumed that
the network could be trained to estimate the internal states given a
history of position errors and velocities, because otherwise the given
information is simply insufficient to control the robot adequately. The
actuator used in this work is revolute and radially symmetric, and the
absolute angular position is irrelevant given the position error.We use
a history consisting of the current state and two past states that cor-
respond to t − 0.01 and t − 0.02 s. Note that too-sparse input configu-
ration might not effectively capture the dynamics at high frequency
(>100Hz). This issuewas partiallymitigated by introducing a smooth-
ness cost term, which penalizes abrupt changes in the output of the
policy. Too-dense history can also have adverse effects: It is more
prone to overfitting and computationally more expensive. The length
of the history should be chosen such that it is sufficiently longer than
the sum of all communication delays and the mechanical response
time. In practice, the exact input configuration is tuned with respect
to the validation error. This tuning process often takes less than a day
because the network is very small.

To train the network, we collected a dataset consisting of joint po-
sition errors, joint velocities, and the torque.We used a simple param-
eterized controller that generates foot trajectories in the form of a sine
wave; the corresponding joint positions were computed using inverse
kinematics. The feet constantly made or broke a contact with the
ground during data collection so that the resulting trajectories roughly
mimicked the trajectories followed by a locomotion controller. To ob-
tain a rich set of data, we varied the amplitude (5 to 10 cm) and the
frequency (1 to 25 Hz) of the foot trajectories and disturbed the robot
manually during data collection. We found that the excitation must
cover a wide range of frequency spectra; otherwise, the trained model

generated unnatural oscillation even during the training phase. Data
collection took less than 4 min because the data could be collected, in
parallel, from the 12 identical actuators on ANYmal. Data were
collected at 400Hz; therefore, the resulting dataset containsmore than
a million samples. About 90% of the generated data were used for
training, and the rest were used for validation.

The actuator network is anMLPwith three hidden layers of 32 units
each (Fig. 5, actuator net box). After testing with two common smooth
and bounded activation functions—tanh and softsign (53)—we chose
the softsign activation function because it is computationally efficient
and provides a smooth mapping. Evaluating the actuator network for
all 12 joints took 12.2 ms with softsign and 31.6 ms with tanh. As shown
here, the tanh activation function resulted in a higher computational
cost and is therefore less preferred. The two activation functions re-
sulted in about the same validation error [0.7 to 0.8 N·m in root mean
square (RMS)]. The validation result with the softsign function is shown
in Fig. 6. The trained network nearly perfectly predicted the torque from
the validation data, whereas the ideal actuatormodel failed to produce a
reasonable prediction.Here, the ideal actuatormodel assumes that there
is no communication delay and that the actuator can generate any com-
manded torque instantly (i.e., infinite actuator bandwidth). The trained
model has an average error of 0.740 N·m on the validation set, which is
not far from the resolution of the torque measurement (0.2 N·m) and
much smaller than the error of the ideal actuator model (3.55 N·m). Its
prediction error on test data (i.e., collected using the trained locomotion
policies) is notably higher (0.966 N·m) but still far less than that of the
ideal model (5.74 N·m).

Reinforcement learning
We represent the control problem in discretized time. At every time
step t, the agent obtains an observation ot ∈O, performs an action
at ∈A, and achieves a scalar reward rt ∈ R. We refer to reward and
cost interchangeably, with cost being the negative of the reward. We
denote byOt= 〈ot, ot − 1,…, ot − h〉 the tuple of recent observations. The
agent selects actions according to a stochastic policy p(at|Ot), which is
a distribution over actions conditioned on the recent observations.
The aim is to find a policy that maximizes the discounted sum of re-
wards over an infinite horizon:

p* ¼ arg max
p

EtðpÞ ∑
∞

t¼0
gtrt

� �
ð1Þ

where g ∈ (0, 1) is the discount factor, and t(p) is the trajectory
distribution under policy p (the distribution depends on both the pol-
icy and the environment dynamics). In our setting, the observations
are the measurements of robot states provided to the controller, the
actions are the position commands to the actuators, and the rewards
are specified so as to induce the behavior of interest.

A variety of RL algorithms can be applied to the specified policy
optimization problem. We chose Trust Region Policy Optimization
(TRPO) (22), a policy gradient algorithm that has been demonstrated
to learn locomotion policies in simulation (54). It requires almost no
parameter tuning; we used only the default parameters [as provided in
(22, 54)] for all learning sessions presented in this paper. We used a
fast custom implementation of the algorithm (55). This efficient im-
plementation and fast rigid-body simulation (41) allowed us to gener-
ate and process about a quarter of a billion state transitions in roughly
4 hours. A learning session terminates if the average performance of
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the policy does not improve by more than a task-specific threshold
within 300 TRPO iterations.

Observation and action
The observations in our method should be observable (i.e., can be
inferred frommeasurements) on the real robot and relevant for the task.
The joint angles, velocities, and body twists are all observable and highly
relevant. Measuring the body orientation is not straightforward be-
cause only two degrees of freedom in the orientation are observable
with an inertial measurement unit (IMU). The set of observable
degrees in the orientation is in bijection with S2, or with a unit vector,
which can be interpreted as the direction of the gravity vector expressed
in the IMU frame. We denote this unit vector as fg. The height of the
base is not observable, but we can estimate it from the leg kinematics,
assuming the terrain is flat. A simple height estimator based on a 1D
Kalman filter was implemented along with the existing state estima-
tion (56). However, this height estimator cannot be used when the ro-
bot is not on its feet, so we removed the height observation when
training for recovery from a fall. The whole observation at t = tk is

defined as ok ¼ 〈fg ; rz; v;w; f;
:
f;Q; ak�1;C〉, where rz, v, and w are

height, linear, and angular velocities of the base, f and
:
f are positions

and velocities of the joints,Q is a sparsely sampled joint state history,
ak−1 is the previous action, and C is the command. The joint state
history is sampled at t = tk − 0.01 s and t = tk − 0.002 s.

The joint state historywas essential in training a locomotion policy.
We hypothesize that this is due to the fact that it enables contact de-
tection. An alternative way to detect contacts is to use force sensors,
which give a reliable contact state estimate. However, such sensors in-
crease the weight of the end effectors and consequently lower the
energy efficiency of the robot. The exact history configuration was
found empirically by analyzing the final performance of the policy.

Our policy outputs low-impedance joint position commands, which
we find to be very effective in many tasks. Peng and van de Panne (57)
found that such a controller can outperform a torque controller in
both training speed and final control performance. Although there
is always a bijective map between them, the two action parameteri-
zations have different smoothness and thus different training diffi-
culty. In addition, a position policy has an advantage in training

Fig. 6. Validation of the learned actuator model. The measured torque and the predicted torque from the trained actuator model are shown. The “ideal model”
curve is computed assuming an ideal actuator (i.e., zero communication delay and zero mechanical response time) and is shown for comparison. (A) Validation set. Data
from (B) a command-conditioned policy experiment with 0.75 m/s forward command velocity and (C) its corresponding policy network output. Data from (D) a high-
speed locomotion policy experiment with 1.6 m/s forward command velocity and (E) its corresponding policy network output. Note that the measured ground truth in
(A) is nearly hidden because the predicted torque from the trained actuator network accurately matches the ground-truth measurements. Test data were collected at
one of the knee joints.
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because it starts as a standing controller, whereas a torque controller
initially creates many trajectories that result in falling. Thus, we use
the policy network as an impedance controller. Our network outputs
a single position reference, which is converted to torque using fixed
gains (kp = 50 N·m rad−1 and kd = 0.1 N·m rad−1 s−1) and zero target
velocity. The position gain is chosen to be roughly the nominal range of
torque (±30 N·m) divided by the nominal range of motion (±0.6 rad).
This ensures that the policy network has similar output range for torque
and position. The velocity gain is chosen to be sufficiently high to pre-
vent unwanted oscillation on the real robot. From our experience, the
final locomotion performance is robust against a small change in gains.
For instance, increasing the position gain to 80 N·m rad−1 does not no-
ticeably change the performance.

Note that the position policy we use here is different from position
controllers commonly used in robotics. Position controllers are some-
times limited in performance when the position reference is time in-
dexed, whichmeans that there is a higher-level controller that assumes
that the position plan will be followed at high accuracy. This is the
main reason that torque controllers have become popular in legged
robotics. However, as in many other RL literature, our control policy
is state indexed and does not suffer from the limitations of common
PD controllers. The policy is trained to foresee that position errors will
occur and even uses them to generate acceleration and interaction
forces. In addition, thanks to kinematic randomization, a trained pol-
icy does not solely rely on kinematics: The policy inevitably has to
learn to exert appropriate impulse on the environment for locomo-
tion. This makes our policy more robust because impulse-based con-
trol approaches are known to be more robust against system changes
and model inaccuracies (44).

Policy training details
The control policies presented in this work were trained only in
simulation. To train performant policies using only simulated data,
we followed both standard and problem-specific training proce-
dures. Here, we describe them in detail and explain the rationale be-
hind them.

Training control policies for locomotion have been demonstrated
multiple times in literature. (22, 24, 25). However, many of the trained
policies do not manifest natural motions, and it is highly questionable
whether they will work on physical systems. Some researchers have
noticed that naive methods cannot generate natural-looking and
energy-efficient locomotion behaviors (58). Low penalty on joint
torque and velocity results in unnaturalmotions, whereas high penalty
on them results in a standing behavior. The main reason for the
standing behavior is that such a behavior is already a good local
minimum when there is high penalty associated with motion.

We solved this problem by introducing a curriculum: Using a
curriculum, we shape the initial cost landscape such that the policy
is strongly attracted to a locomotion policy and then later polish the
motion to satisfy the other criteria. A simple curriculum was gener-
ated by modulating the coefficients of the cost terms and the distur-
bance via a multiplicative curriculum factor. We define a curriculum
factor that describes the progression of the curriculum: kc = k0 ∈ (0, 1)
corresponds to the start of the curriculum and kc = 1 corresponds to
the final difficulty level. The intermediate values are computed as
kc;jþ1 ← ðkc;jÞkd , where kd ∈ (0, 1) is the advance rate, which describes
how quickly the final difficulty level is reached, and j is the iteration
index of RL training. The sequence of curriculum factors is monoton-
ically increasing and asymptotically converging to 1 within the given

parameter intervals. We suspect that many other update rules adher-
ing to these criteria will result in similar learning performance. All of
cost terms are multiplied by this curriculum factor, except the cost
terms related to the objective (i.e., base velocity error cost in the
command-conditioned and high-speed locomotion task and base ori-
entation cost in recovery task). This way, the robot first learns how to
achieve the objective and then how to respect various constraints. This
technique is related to curriculum learning introduced by Bengio et al.
(59), which incrementally introduces samples of more difficulties. In-
stead of altering the samples, we alter the objective to control the
training difficulty. For all training sessions, we use k0 = 0.3 and kd =
0.997. The parameter k0 should be chosen to prevent the initial ten-
dency to stand still. It can be easily tuned by observing the first 100
iterations of the RL algorithm. The parameter kd is chosen such that
the curriculum factor almost reaches 1 (or ~0.9) at the end of training.
Although the required number iterations are not known a priori, there
are sufficient publications on RL applications (including this one) to
provide necessary insights to the users.

We tuned the discount factor g (Eq. 1) separately for each task
based on the qualitative performance of the trained controllers in
simulation. For training the command-conditioned controller and
the high-speed controller, we used g = 0.9988, which corresponds
to a half-life of 5.77 s. We also successfully trained almost equally
performant policies with a lower half-life (2 s), but they manifest a
less natural standing posture. For training the recovery controller, we
used g = 0.993, which corresponds to a half-life of 4.93 s. A sufficiently
high discount factor shows more natural standing posture owing to
the fact that it penalizes standing torque more than motion (torque,
joint velocities, and other quantities incurring due to motion). How-
ever, a too-high discount factor might result in a slow convergence, so
it should be tuned appropriately depending on the task. For training
command-conditioned and high-speed locomotion, TRPO finished
training in 9 days of simulated time, which corresponds to 4 hours
of computation in real time. For training for recovery from a fall,
TRPO took 79 days of simulated time, which corresponds to 11 hours
of computation in real time.

For command-conditioned and high-speed locomotion, we rep-
resent a command by three desired body velocity values: forward
velocity, lateral velocity, and the turning rate. During training,
the commands are sampled randomly from predefined intervals
(see tables S1 and S2 for details), and the cost defined in section S3
is used. The initial state of the robot is sampled either from a previous
trajectory or a random distribution, shown in table S3, with equal
probability. This initialization procedure generates data containing
complicated state transitions and robustifies the trained controller.
Each trajectory lasts 6 s unless the robot reaches a terminal state ear-
lier. There are two possibilities for termination: violating joint limits
and hitting the ground with the base. Upon termination, agent re-
ceives a cost of 1 and is reinitialized. The value of the termination
cost is not tuned: Because only the ratio between the cost coefficients
is important for the final performance, we tune other cost terms to
work with this terminal value.

For training recovery from a fall, the collision bodies of the
ANYmal model are randomized in size and position. Samples that
result in unrealistic internal collisions are removed. The cost function
and the initial state distribution are described in section S4 and fig. S3,
respectively. The special initialization method in section S4 is needed
to train for this task, because naive sampling often results in inter-
penetration and the dynamics become unrealistic. To this end, we
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dropped ANYmal from a height of 1.0 m with randomized orienta-
tions and joint positions, ran the simulation for 1.2 s, and used the
resulting state as initialization.

Another crucial detail is that joint velocities cannot be directly
measured on the real robot. Rather, they are computed by numeri-
cally differentiating the position signal, which results in noisy esti-
mates. We modeled this imperfection by injecting a strong additive
noise [U(−0.5, 0.5) rad/s] to the joint velocity measurements during
training. This way, we ensured that the learned policy is robust to in-
accurate velocity measurements. We also added noise during training
to the observed linear velocity [U(−0.08, 0.08) m/s] and angular veloc-
ity [U(−0.16, 0.16) m/s] of the base. The rest of the observations were
noise free. Removing velocities from the observation altogether led to
a complete failure to train, although in theory, the policy network
could infer velocities as finite differences of observed positions. We
explain this by the fact that nonconvexity of network training makes
appropriate input preprocessing important. For similar reasons, input
normalization is necessary in most learning procedures.

We implemented the policy with an MLP with two hidden layers,
with 256 and 128 units each and tanh nonlinearity (Fig. 5). We found
that the nonlinearity has a strong effect on performance on the physical
system. Performance of two trained policies with different activation
functions can be very different in the real world evenwhen they perform
similarly in simulation. Our explanation is that unbounded activation
functions, such as rectified linear unit, can degrade performance on the
real robot, because actions can have very high magnitude when the ro-
bot reaches states that were not visited during training. Bounded acti-
vation functions, such as tanh, yield less aggressive trajectories when
subjected to disturbances.We believe that this is true for softsign aswell,
but it was not tested in policy networks owing to an implementation
issue in our RL framework (55).

Deployment on the physical system
We used the ANYmal robot (5), shown in step 4 of Fig. 1, to demon-
strate the real-world applicability of ourmethod.ANYmal is a dog-sized
quadrupedal robot weighing about 32 kg. Each leg is about 55 cm long
and has three actuated degrees of freedom, namely, hip abduction/
adduction, hip flexion/extension, and knee flexion/extension.

ANYmal is equipped with 12 SEAs (60, 61). An SEA is composed of
an electric motor, a high gear ratio transmission, an elastic element, and
two rotary encoders to measure spring deflection and output position.
In this work, we used a joint-level PD controller with low feedback gains
on the joint-level actuator module of the ANYmal robot. The dynamics
of the actuators contain multiple components in succession, as follows.
First, the position command is converted to the desired torque using a
PD controller. Subsequently, the desired current is computed using a
PID controller from the desired torque. The desired current is then
converted to phase voltage using a field-oriented controller, which
produces the torque at the input of the transmission. The output of
the transmission is connected to an elastic element whose deflection fi-
nally generates torque at the joint (39). These highly complex dynamics
introducemany hidden internal states that we do not have direct access
to and complicate our control problem.

After acquiring a parameter set for a trained policy fromour hybrid
simulation, the deployment on the real system was straightforward. A
custom MLP implementation and the trained parameter set were
ported to the robot’s onboard PC. This network was evaluated at
200 Hz for command-conditioned/high-speed locomotion and at
100 Hz for recovery from a fall. We found that performance was un-

expectedly insensitive to the control rate. For example, the recovery
motion was trained at 20 Hz but performance was identical when
we increased the control rate up to 100 Hz. This was possible be-
cause the flip-up behaviors involve low joint velocities (mostly below
6 rad/s). More dynamic behaviors (e.g., locomotion) often require a
much higher control rate to have an adequate performance. A higher
frequency (100 Hz) was used for experiments because it made less
audible noise. Even at 100 Hz, evaluation of the network uses only
0.25% of the computation available on a single CPU core.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/26/eaau5872/DC1
Section S1. Nomenclature
Section S2. Random command sampling method used for evaluating the learned
command-conditioned controller
Section S3. Cost terms for training command-conditioned locomotion and high-speed
locomotion tasks
Section S4. Cost terms for training recovery from a fall
Fig. S1. Base velocity tracking performance of the learned controller while following
random commands.
Fig. S2. Base velocity tracking performance of the best existing method while following
random commands.
Fig. S3. Sampled initial states for training a recovery controller.
Table S1. Command distribution for training command-conditioned locomotion.
Table S2. Command distribution for training high-speed locomotion.
Table S3. Initial state distribution for training both the command-conditioned and high-speed
locomotion.
Movie S1. Locomotion policy trained with a learned actuator model.
Movie S2. Random command experiment.
Movie S3. Locomotion policy trained with an analytical actuator model.
Movie S4. Locomotion policy trained with an ideal actuator model.
Movie S5. Performance of a learned high-speed policy.
Movie S6. Performance of a learned recovery policy.
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Perching and resting—A paradigm for UAV
maneuvering with modularized landing gears
Kaiyu Hang1*†, Ximin Lyu2*, Haoran Song2*, Johannes A. Stork3,4*, Aaron M. Dollar1,
Danica Kragic3, Fu Zhang5

Perching helps small unmanned aerial vehicles (UAVs) extend their time of operation by saving battery power.
However, most strategies for UAV perching require complex maneuvering and rely on specific structures, such as
rough walls for attaching or tree branches for grasping. Many strategies to perching neglect the UAV’s mission
such that saving battery power interrupts the mission. We suggest enabling UAVs with the capability of making
and stabilizing contacts with the environment, whichwill allow the UAV to consume less energywhile retaining its
altitude, in addition to the perching capability that has been proposed before. This new capability is termed
“resting.” For this, we propose a modularized and actuated landing gear framework that allows stabilizing the
UAV on a wide range of different structures by perching and resting. Modularization allows our framework to
adapt to specific structures for resting through rapid prototyping with additive manufacturing. Actuation allows
switching between different modes of perching and resting during flight and additionally enables perching by
grasping. Our results show that this framework can be used to perform UAV perching and resting on a set of
common structures, such as street lights and edges or corners of buildings. We show that the design is effective
in reducing power consumption, promotes increased pose stability, and preserves large vision ranges while
perching or resting at heights. In addition, we discuss the potential applications facilitated by our design, as well
as the potential issues to be addressed for deployment in practice.

INTRODUCTION
With recent advances in lightweight, low-power sensor technology
and onboard computation, unmanned aerial vehicles (UAVs) are
now engaging inmissions with an unprecedented degree of autonomy
(1–3). Onboard sensors such as cameras, ultrasonic sensors, and accel-
erometers not only provide advanced perception capabilities that al-
low increasingly complex missions but also enable more powerful
control methods (4–8). Even commercial off-the-shelf (COTS) UAVs
can reliably fulfill missions such as aerial videography, autonomous
surveillance, object delivery, and construction site inspection (9–13)
and are deployed in crisis response to provide on-site measurements
(2, 14–16) or set up ad hoc data networks (17).

Autonomous UAVs are often deployed to conduct long-duration
missions that require watching an area on the ground from heights for
an extendedperiod of time, such as in an autonomous surveillance task
(12, 18). For this reason, energy consumption is one of the primary
concerns in the operation of lightweight UAVs because mission dura-
tion is limited by battery power. BecauseUAVs require constantmotor
action to create lift to stay in the air, more energy-efficient control and
aircraft design are therefore of high interest to reduce the energy con-
sumption during flight (19–24). However, the most effective way of
saving energy is to directly reduce the required lift during execution
of the mission.

Exploiting contacts to save energy
In this work, we try to learn from nature and take inspiration from the
behavior and anatomy of birds and bats. However, we propose a de-

sign that is simpler and more optimized for the specific task of saving
energy than what we observe in nature. Figure 1 displays several ways
in which animals with powered flight have adapted to temporarily ex-
ploit contacts with structures in their habitat for saving energy. For
example, birds can be observed placing their feet on supports while
still flapping their wings, and bats are known to hang upside down
while grasping suitable surfaces. In all of these cases, some suitably
shaped part of the animal’s foot interacts with a structure in the
environment and facilitates that less lift needs to be generated or that
power flight can be completely suspended.

Our goal is to use the same concept, which is commonly referred to
as “perching,” for UAVs. Perching requires attaching and detaching
from a structure in the surroundings on command and relies on the
availability of certain structures in the surroundings, such as tree
branches. It is therefore limited to a small set ofmission environments;
when the perching location does not provide a good view range, it will
result in mission interruptions. For addressing the problem of allow-
ing UAVs to reduce their power consumption in a mission, we pro-
pose to enable UAVs with the capability of making and stabilizing
contacts with the environment to obtain force support. With this ca-
pability, UAVs require less lift generated by the motors and can save
energy. Moreover, it enables UAVs to be able to exploit a much larger
range of structures in the environment to conduct missions without
interruptions. We term this kind of action “resting” (Fig. 1, left and
right). Perching or resting on elevated locations allows continuation
of a large range of UAV missions with reduced, or even suspended,
motor action and therefore extends the UAV’s operation time and
allows long-duration missions, such as in the most common perch-
and-stare missions (25). Additionally, perching and resting remove
degrees of freedom from the UAV’s motion and can therefore reduce
the required attention from operators and can improve safety.

The need for perching capabilities in UAVs has led to research in
a wide range of different forms of landing gears (26–44), control for
the required flight regimes, and the generation and optimization of
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approach trajectories (30–32, 37, 38, 45–47). Surface contacts were
established and maintained with dry adhesive technology, such as
electrostatic surfaces (41–43) or fibers (44). A collection of small
needles were used for perching on rough surfaces (26–31) or com-
bined to form bioinspired claw-like grippers (33). Also, multiple ten-
sile anchors were launched to fixed structures (48) to mechanically
stabilize the UAV for high-accuracy operation in a three-dimensional
(3D) workspace. Other UAV-mounted grippers took design inspira-
tion from the feet of songbirds for perching on branch-shaped
structures (37–40). Furthermore, grippers were used to attach to flat
surfaces (32, 46) and, in some cases, also served as landing skids
when opened (36). In general, passive and compliant grippers can
wrap around structures (34, 39–41), whereas actuated grippers can
actively grasp a structure to attach the UAV (33, 36).

Challenges
Approaches based on dry adhesive (41–44) or small needles (26–31)
have only been demonstrated for extremely lightweight UAVs and re-
quire specific UAV design to allow proper positioning of the landing
gear for perching. Therefore, these approaches are difficult to adapt to
COTS UAVs or UAVs that carry a heavy sensor payload, such as a
high-resolution camera. Also, although avian-inspired grippers can
be mounted on COTS UAVs, most gripper-based approaches are
limited to perching on cylindrical structures of a certain diameter (36).

As another very important component for perching, control has
to address a challenging problem because the UAV needs to be
positioned close to a structure. Different from flight in open space,
this is often done with flight regimes involving high angle of attack
(47), post stall (45), or aggressive (32, 46) maneuvering to bring the
landing gear to the required attitude and location while the UAV
reaches a flight condition that allows safe contacting on the structure.

In bioinspired approaches, this can be done directly from feedback
without optimizing the flight trajectory explicitly before the flight
(37, 38). For maneuvering while in contact with a pivot point on a
structure, dynamic modeling of the different flight phases is neces-
sary (49).

However, flight regimes for attaching and detaching are, in many
cases, complex and are not covered by control for COTS UAVs. For
instance, approaches that perch on walls and have the landing gear
mounted below the UAV have to fly toward the wall and turn the
bottom side forward for attachment (26–32, 46). Failure to attach
will result in a critical flight condition close to an obstacle. These
risks are shared with approaches that use a high angle of attack
(47) and post stall (45) maneuvers for perching. Perching on walls
can also require a mechanism-supported takeoff strategy that puts
the UAV in a critical flight condition after detachment (26).

Many approaches are not focused on continuing the UAV’s mis-
sion and can therefore lead to mission interruption when perching.
For instance, in approaches that rely on surfaces for perching, the
UAV has to comply to the surface’s orientation (26–32, 46), which
might obstruct sensors or communication devices. As a result, it is still
challenging to enable perching capabilities in COTS UAVs under a
wide range of circumstances without disrupting themission or requir-
ing risky and complex maneuvering that involves critical flight
conditions.

A new paradigm for perching and resting
As mentioned above, we observed in nature that (perching) birds
and bats have adapted to their habitats by developing prehensility
and claws in their feet, which allows them to use a large variety of
structures for support when perching (see Fig. 1). Instead of directly
imitating, for instance, the feet of perching birds (passerine birds),

Fig. 1. Example perching and resting actions in nature. Flying animals such as birds or bats often make use of structures in the environment to save energy. In
choosing, they select locations that can be approached and evacuated by simply maneuvering in the air while still allowing them to execute a mission such as
observing the environment or looking for prey.
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we propose a simplified and specialized solution for COTS UAVs.
On the basis of four design principles, we designed a modularized
and actuated landing gear framework for rotary-wing UAVs consist-
ing of an actuated gripper module and a set of contact modules that
are mounted on the gripper’s fingers. The gripper module was
mounted on the bottom side of the UAV and, for its weight and size,
was compliant with a large range of COTS UAVs. Unlike previous
approaches with grippers (37–40), our approach was not limited
to cylindrical structures and did not require complex attachment
maneuvers, such as a sideways approach (32, 46).

If a horizontal surface was available, the gripper module was
opened and the stiff fingers were used as landing skids, similar to a
bird landing on a flat rooftop. If a cylindrical structure was available,
the UAV approached it from above such that the gripper module
could grasp the structure, after which all motors could be suspended.
This was directly inspired by how birds land on branches of trees
onto which they then hold. For other types of structures, such as
edges or corners of a building, strut, bar, or street sign, we relied
on modularization, allowing us to flexibly design and fabricate con-
tact modules that matched the specific structure. Through gripper
actuation and position control, we then brought a suitable contact
module to rest on the structure, and all or a part of the UAV’s weight
was supported by the structure, reducing the required lift. This mod-
ularization substantially increased the range of possible structures
that can be exploited for perching and resting as compared with
avian-inspired grippers. Although not inspired by nature and much
more simple than the foot of a bird, the stiff fingers and contact mod-
ules were easier to manufacture and more robust and durable than
avian-inspired grippers with several joints per finger.

Takeoff and landing are critical phases in a flight; for example,
pigeons show complex patterns of wing strokes for acceleration
and deceleration during maneuvers (50). Although we took inspira-
tion from how birds and bats rest, we did not imitate their maneu-
vering for landing or taking off because the UAV as a rotary wing
aircraft has substantial different flight characteristics from birds
and bats with flapping wings. In contrast to previous approaches
(32, 37, 38, 45–47), we developed an approach that relied on position
control and reference poses only, without requiring complex control
strategies. For perception, we present a proof-of-concept method
that identified suitable structures for perching and resting frompoint
cloud data of the environment.

Overall, we investigated four fundamental questions of UAVma-
neuvering in terms of the exploitation of external contacts: (i) how to
design landing gears to facilitate UAVs to exploit contacts for
perching and resting, (ii) how energy consumption and pose stability
are affected by perching and resting, (iii) how the mission-relevant
view ranges of UAVs are affected by different perching and resting
actions, and (iv) the use cases and limitations of the proposed
paradigm.

In experiments, we mounted our landing gear framework on a
COTS UAV and demonstrated the efficacy of our design in enabling
the desired perching and resting capabilities in a controlled laboratory
environment. The experiments included perception of and perching
and resting on different structures. During the experiments, the
UAV was globally localized with an external measurement system.
In this setting, we evaluated power consumption and pose stability
during perching and resting for empirical comparison with hovering.
Furthermore, we qualitatively studied the view ranges of different
perching and resting actions on locations at heights and discuss other

potential usage in terms of the features enabled by perching and
resting. Our experiment results show that the proposed paradigm
not only reduces energy consumption but also enables UAVs to ex-
ploit external contacts with a variety of structures to facilitate mission
execution, which, to the best of our knowledge, has not been extensive-
ly studied.

RESULTS
Our modularized and actuated landing gear framework is designed
to be flexible and accommodate a wide range of applications. To
demonstrate and evaluate the principles and efficacy of our design,
we present a proof-of-concept study in which we designed and fab-
ricated a landing gear for a DJI F450 quadrotor platform and tested
the resulting perching and resting capabilities in a number of scenar-
ios with different structures. Because most recent UAV applications
involve load-carrying for videography or surveillance, we evaluated
the perching and resting states in terms of (i) power consumption,
(ii) pose stability, and (iii) view ranges.

We fabricated the gripper module’s base and fingers using carbon
fiber to keep the landing gear rigid and lightweight. The contact
modules were 3D printed using the soft TangoBlackPlus material
to facilitate contact compliance and stability for a wide range of en-
vironments. The weight of each part of our landing gear framework
is listed in table S1. In the experiments, the environment was per-
ceived using an externally placed Kinect One sensor, which provided
point clouds in which we detected structures that allowed perching
and resting. Once contact locations in the environment were identi-
fied, as shown by colored points in Figs. 2 and 4, the UAV was au-
tonomously navigated on the basis of the localization provided by a
VICON system. An example laboratory setup for our experiments is
shown in Fig. 2.

Landing gear design
In this section, we first describe the design principles of the proposed
modularized landing gear framework. On the basis of the principles,
we demonstrate our example design and evaluate its performance.
Principles of landing gear design for perching and resting with
COTS UAVs
To enable perching and resting under various circumstances while
keeping the design versatile, we proposed to design landing gears
obeying four principles:

Fig. 2. Example actions with vision-based perching and resting location
detection. (A) Laboratory environment and detected perching and resting loca-
tions. (B) Perching by hooking on a thin board (PH). (C) Resting by hooking on a
stick (RH). (D) Perching by grasping around a stick (PG).
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1) The landing gear should be usable for landing on flat surfaces,
mirroring the capabilities of most standard landing gears for COTS
UAVs. This allows theUAVs to land and take off as usual COTSUAVs.

2) The landing gear should allow the UAVs to grasp or hook
around structures of different scales. This allows the UAVs to turn
all rotors off when perched

3) The landing gear should allow the UAVs to rest on different
structures to provide lift support in the vertical direction. This allows
the UAV to slow down or completely stop some of the rotors when
resting by establishing stable contacts with the environment.

4) The landing gear should be mountable on a COTS UAV and be
minimalistic in hardware, actuators, and control. This allows the user
to design and replace parts of the landing gear without the need of
reprogramming when working in different scenarios.

Following the principles, we demonstrate an example design con-
sisting of an actuated gripper module that features principles 1, 2,
and 4 and a set of contact modules that features principles 3 and 4.

Actuated gripper module
The actuated gripper module consists of servomotors, a set of fingers,
and a base platform that attached to the bottom of the UAV. Our
landing gear design for the DJI F450 UAVwith three fingers is shown
in Fig. 3. On the base platform, the three servomotors were installed to
actuate open and close motions of the fingers. To ensure sufficient
grasping forces, the three servomotors were adopted to actuate the
fingers separately. However, the motors were controlled jointly for
open and close actions with only one degree of freedom. In practice,
all fingers can be actuated by a single motor as long as the provided
torque is sufficient for the grasping actions. When the gripper was
opened, the fingers enabled normal landing and takeoff from the
ground because the fingertips were in level position under the UAV.

As seen in Fig. 3, the size of the landing gear is approximately iden-
tical to theUAV’s dimensions. This enables theUAV to grasp structures
of up to 0.2 m in radius. However, deciding on the dimensions of the
gripper module involves trade-offs in the size of potential perching

structures, the gripper weight, undesired aerodynamical side effects,
and collision-free maneuvering. A larger gripper can accommodate
larger structures but can lead to loose contact for small structures.
Our design made finger replacement easy, and it is recommended
to design the fingers in appropriate sizes to achieve the tasks while
avoiding undesired side effects. Additionally, the design of the gripper
fingers should guarantee that it makes a closed loop when in close po-
sition, which ensures perching ability on all structures within the scale
of the landing gear.

Contact modules
According to the design principles, we equipped the UAV with dif-
ferent contact modules that were easy to use, design, and fabricate.
Inspired by the claws of birds, we designed the contact modules such
that they were able to stabilize the UAV with different structures in
the environment by contacting theirmodeled side, which acts similar
to claws to hold onto small or thin structures. As shown in Fig. 3, con-
tact modules were installed at the distal ends of the fingers, making
them accessible to structures below the UAV. For resting, the grip-
per module was actuated to bring the contact module to the desired
pose. This could be an open pose for contacts on one side of the
UAV (Fig. 4A) or a closed pose for contacts below the center of
the UAV (Fig. 4B). The contact modules themselves were not actu-
ated for actively stabilizing the contacts. Instead, their shapes were
adapted to achieve stable contacts against certain structures. On the
basis of the minimalistic and modular design principles, the contact
modules were exchangeable to provide more contact possibilities
with a large variety of geometries.

In this work, we exemplify a few contact module designs that were
based on the concept of contact primitives and fingertip surface op-
timization (51). The algorithm synthesized contact modules based on
a set of example structures. As long as the provided examples suffi-
ciently represented potential contact structures, the synthesized con-
tact modules were able to stabilize the contacts. Figure 3 shows two
contact modules (II and III) that were synthesized by the algorithm.
Additionally, similar to claws that birds use to grasp and perch, we
designed another L-shaped contact module, which, together with
the finger, created a U-shaped claw. As shown in Fig. 3, this design

Fig. 4. Example resting actions with vision-based perching and resting loca-
tion detection. (A) Resting on a box’s edge (RE). (B) Stand-resting on a stick (RS).

Finger

Finger

Finger

Base

Contact
Modules

The fingers are actuated

When deployed for different tasks, the contact modules can be exchanged

Fig. 3. An example landing gear design for DJI F450. (A) Example of the mod-
ularized landing gear design consisting of a base, three fingers, and three differ-
ent contact modules. (B) Example of the installation of the designed modules on
a DJI F450 platform. (C) Example perching and resting actions using different con-
tact modules or the actuated gripper module.

S C I ENCE ROBOT I C S | R E S EARCH ART I C L E

Hang et al., Sci. Robot. 4, eaau6637 (2019) 13 March 2019 4 of 10

 at AAAS on February 24, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

www.ScienceRobotics.org     13 March 2019     Vol 4  Issue 28 aau6637                

http://www.ScienceRobotics.org
http://www.ScienceRobotics.org


R E S E A R C H  A R T I C L E

40

allowed perching on thin structures onto
which aUAV can hook itself using gravity.

Saving power by reducing
motor action
In this work, we exemplify five perching
or resting actions using the experimental
UAV for demonstration and evaluation.
As seen in Figs. 2 and 4, the actions were
perching by hooking (PH), perching by
grasping (PG), resting by hooking (RH),
restingon an edge (RE), and stand-resting
on a stick (RS).

Power consumption is one of the ma-
jor concerns formanyUAV applications,
and the main goal of our design was to
save battery power by reducing motor
action for generating lift. For this rea-
son, we analyzed energy consumption in
examples of perching and resting and
compared them with the energy con-
sumption while hovering in the air or
above the floor.

If the UAVwas perching by grasping
around a structure (PG) or hooking on a
thin structure (PH), as seen in Fig. 2, its
weight was fully supported by the struc-
ture, and all the rotors could be turned off.
Therefore, the energy consumptionwas 0.

When using a contact module below
the center of the UAV for resting, as seen
by the action RS in Fig. 4, all the rotors
still needed to be used for maintaining
the balance. However, the rotors could
be markedly slowed down because the
load was mainly supported by the struc-
ture.When using contact modules for resting on a structure below the
side of the UAV, as shown by the actions RE in Fig. 4 and RH in Fig. 2,
theUAVhad to onlymaintain two degrees of freedom,whichwere the
rotation about the contact line and sliding along the contact line. In
those cases, two rotors could be completely turned off.

Empirical results are reported in Fig. 5. The power consumption
data were recorded from the point when the UAV had stabilized itself
and ended when the UAV took off again. As can be seen from the
figure, the stand-resting action RS consumed the least energy because
almost all the load was supported by the contact. When resting on the
box edgeRE or on the stickRH, power consumption was higher, which
was up to about half of the energy consumption of the hovering action.
It is worthwhile noting that these two resting actions consumed a bit
more power than half of the hovering. This is because theUAVneeded
to counteract the ground effect when it was very close to other objects.
Last, we could see that, when hovering near ground, due to the ground
effect, the UAV consumed a little less energy than hovering in the air.
In comparison with hovering in the air, RS, RE, and RH saved 69, 46,
and 41% power consumption, respectively.

Evaluating stability and view range
For many applications such as videography, surveillance, or object
delivery at heights, stable positioning of the UAV over a period of

time is necessary. For this reason, we evaluate position oscilla-
tion Dp with respect to a reference location �p ¼ ð�x;�y;�zÞ for dif-
ferent perching and resting scenarios. For this, we define Dp ¼
1
T∑i¼1

T ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � �xÞ2 þ ðyi � �yÞ2 þ ðzi � �zÞ2

q
, where (xi, yi, zi) is the lo-

cation sampled at time i, 1≤ i≤ T. Because the UAV’s position was
passively determined when all rotors were turned off, we only eval-
uated the position oscillation for resting actions when the stability
was actively determined by the control of rotors.

As reported in Fig. 5, hovering results in oscillation were within a
small range of about 2 cm. However, resting was even more stable
and maintained the desired pose within about 5 mm. By checking
the standard deviations, we could see that the standard deviations
of resting were less than half of those of the hovering actions. These
results show that resting can provide more stability while at the same
time reducing power consumption.

Especially in perch-and-stare missions, the UAV’s view range is a
crucial concern when it is tasked to stare or watch over a certain area.
However, landing on a flat elevated position such as a rooftop can
significantly reduce the UAV’s view range. Figure 6 shows how the
rooftop occludes most of the view ranges below when a UAV lands
on it. Compared with that, perching or resting as offered by themod-
ularized landing gear framework can improve the view range. In

Fig. 5. Power consumption and stability evaluation results. For measuring the power consumption, we took the
measurement directly from the motors without considering the power consumed by other electronics. On each box
plot, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively. The whiskers extend to the most extreme data points not considered outliers, and the
outliers are plotted individually using the “+” symbol.
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most cases, the UAV could fully observe the area below it without
any occlusions. An exception was seen when a UAV rested on the
edge of a building, which occluded about half of the view below.
Nonetheless, it was still much better than a normal roof landing.

Upon using different perching or resting actions, the onboard
camera could be configured accordingly to optimize the view. For
example, when perching on a stick by using the actuated fingers to
grasp, the UAVwill finally be stabilized after it turns over around the
stick and stops all its rotors. Hence, unlike most UAVs, which have
the camera installed below the main frame, the camera, or an extra
camera, should be installed on top of the UAV to achieve the view
range when the UAV turns over and faces down.

DISCUSSION
In this section, we first give a brief summary of what has been pro-
posed and evaluated. Thereafter, we discuss the limitations and im-
plementation concerns of our design, the concerns in pose stability
and energy consumption in relation to our paradigm, and the use
cases of the proposed design framework.

In this work, we focused on the problem of enabling perching and
resting for rotary-wingUAVs. First, we proposed to enableUAVswith

the capability ofmaking and stabilizing contacts with the environment
so as to obtain force supports from the contacts to be able to consume
less battery energywhile retaining the heights. For this, we developed a
design framework of modularized and actuated landing gears consist-
ing of an actuated gripper module and customized contact modules.
The goal was to permit lower power consumption, better stability, and
larger view ranges when the task was to be executed at fixed locations
at heights. Following the four design principles, we designed an exam-
ple landing gear for a DJI F450 quadrotor. The example design is com-
posed of a base platform, three actuated fingers that were fabricated
using carbon fibers, and three customized contact modules that were
3D printed using soft materials. The design resembles the basic func-
tionalities of normal landing gears allowing landing and takeoff actions
and is lightweight for the UAV to carry on board while not introducing
much more extra power consumption.

We validated the example design by demonstrating perching and
resting under laboratory conditions, such as perching by grasping
and hooking, resting on an edge or stick, and stand-resting on a
stick. The stability and power consumption of demonstrated actions
were evaluated, and the results indicate that the featured actions can
significantly reduce the power consumption while providing better
stability comparing with normal actions. Additionally, we have

Fig. 6. Example view ranges of different perching and resting actions. The top row shows various perching and resting actions, with arrows indicating which rotors
are still working for generating lift. The bottom row shows the corresponding view ranges rendered by green cones.

Fig. 7. Flowchart of the hybrid system for perching and resting location detection.
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qualitatively shown that the featured actions provide much larger
view ranges when working at heights, which can hardly be achieved
by normal landing actions.

Limitations and implementation in practice
In this work, our experimental quadrotor was not equipped with
onboard vision capability. The perching and resting locations were de-
tected on the basis of the point cloud obtained by an external Kinect
One sensor beforehand, and the UAVwas navigated by a VICON sys-
tem in the laboratory environment. In practice, when maneuvering a
UAV in outdoor environments, the onboard visual perception is im-
portant to help the human operator to navigate or to enable the UAV
to bemore autonomous.When aUAV is tasked to autonomously exe-
cute perching or resting actions, an onboard visual sensor is required
to enable the UAV to understand the environment, as well as to de-
tect the locations where desired actions can be applied. As will be
described shortly, given that the modularized landing gears were
flexibly customized for accommodating a certain range of task re-
quirements, the vision algorithms can be designed using template-
based approaches that match geometrical features between the
environment and the designs. Nevertheless, the vision-based detec-
tion approach is intrinsically limited in that it is not easy to acquire
physical properties of the environment, such as the rigidity of the
detected locations, which can affect the action stability. For addres-
sing this problem, learning-based algorithms can be adopted to predict
the physical properties.More reliably, active perception algorithms can
be developed to conduct physical estimation by enabling the UAV to
actively interact with the environment; for example, a UAV can use its
contactmodules to touch and press certain locations to acquire knowl-
edge, which can potentially be obtained by additional sensors installed
on the contact modules.

Additionally, in our experiments, our control strategy is to always
navigate the UAV to a point above the perching or resting locations
and then execute the action from top-down. However, in many tasks
in reality, one can imagine a UAVworking in confined environments,
in which the perching or resting actions cannot be executed without a
trajectory planning algorithm. As discussed in (38, 52), we could en-
able the UAV with trajectory planning to perch or rest in more diffi-
cult scenarios by bringing theUAV to the desired locationwithout the
top-down motion constraint. For instance, a UAV could perch on a
tree branch by approaching it from the side and grasping it with the
fingers when the region above that tree branch is occluded.

Pose stability and energy consumption
As the main goals of the proposed paradigm, pose stability and energy
consumption have been evaluated using an example design in a labo-

ratory environment. The experimental results have shown that both
perching and resting actions can significantly reduce the power con-
sumption by exploiting force support from external contacts. In addi-
tion, using the same flight controller, we have seen that pose stability
has been improved when external contacts were made. This can be
explained by the fact that, when contacts were made between the con-
tact modules and external structures, the degrees of freedom of the
UAV’s movement were reduced. Hence, the potential external distur-
bance was reduced, and more importantly, the flight controller could
focus on balancing only the remaining degrees of freedom, mitigating
the trade-off of keeping pose stabilities between different moving
dimensions.

Nonetheless, we can foresee a variety of factors that can affect
these two performance concerns. When a UAV is tasked to work
in outdoor environments, wind disturbance and other aerodynamic
uncertainties can be a major factor that affects pose stability. In this
case, the flight controller will have to regulate the actuation inputs
more intensively to keep the stability at a similar level, resulting in
increased energy consumption. Moreover, the rigidity or mobility
of contact locations can be another concern that affects the pose sta-
bility. For example, when resting by making contacts at a thin tree
branch, although the UAV can gain force support to reduce energy
consumption, stability is more difficult to keep because of the passive
movement of the contacts, and the UAV will consume more motor
energy in comparison with making contacts at rigid locations. To reduce
the effect of physical uncertainties and to improve the energyperformance,
although not included in this work, we plan to design a tilt-pan connector
between the main body of the UAV and the modular landing gear. By
mechanically decoupling the movement of the UAV’s main body from
the landing gear or by actively compensating the disturbances at the con-
nector, the pose stability can be further improved. Limited by the scope of
this study, we leave this development to our future work.

Use cases
A UAV with perching and resting capabilities may enable many ap-
plications that are not possible otherwise. Besides that perching and
resting can provide lower power consumption, better stability, and
larger view ranges in many cases, which are very useful for perch-
and-stare applications, the physical interaction with the environment
enabled by such actions may additionally empower many more appli-
cations. For example, in aerial grasping (53–55), the maximum load is
limited by the power provided by the rotors. However, once a UAV is
perched, it will be able to lift markedly larger loads without requiring
any power from the rotors.

When delivering objects to workers at heights, a UAV can perch
or rest at some location near the worker for object pickup, or it can
carry a pair of pulley and rope to perch at a certain location, such that
object delivery can be achieved fromboth ends of the rope.While rest-
ing at the edge of a windowsill, a UAVwill be able to deliver objects to
someone inside, without the need to keep the rotors at the window
side still working, so as to reduce the risk for humans to interact with
aUAV.Overall, the ability ofmaking contacts by resting or fixing itself
by perching at heights may empower many applications that are re-
lated to load-lifting and that demand interaction.

MATERIALS AND METHODS
In addition to the design of the proposed modularized landing gears,
this section briefly describes how to enable a UAV with such landing

Fig. 8. Example contact area extraction for automatic contact module design.
(A) Extraction of a contact area (red) based on the specified contact pose and size.
(B) Shape primitives (black) and extracted contact areas (clustered in blue and
yellow) used in the contact module design in this work. (C) Contact modules de-
signed in terms of the clustered contact areas.
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gears to execute the perching and resting actions in reality. Concretely,
we introduce how we implemented the vision algorithm to detect
perching and resting locations, how the UAV was controlled, and how
to automatically design contact modules based on example contacts.

Perching location detection and navigation
As the main focus, we concentrated on the design of modularized
landing gears and evaluated our example design installed on a DJI
F450 platform. For the experiments, we did not install an onboard
camera for the UAV to detect perching locations or other sensors to
navigate it in the environment. Instead, we 3D-scanned the laboratory
environment beforehand and saved a point cloud of the environment.
For perching location detection, we implemented a hybrid system
based on the PCL (Point Cloud Library) (56) to detect feasible perch-
ing and resting locations. Concretely, as shown in Fig. 7, the system
takes the environment point cloud as the input and first needs to de-
cide whether a perching location or a resting location is desired. In
practice, we always tried to find perching locations first and then
looked for resting locations if the former was not available.

If some perching structures are desired, in addition to the environ-
ment point cloud, the systemwas providedwith a set of shape primitives
that were preferable for perching actions. In our examples, we showed
perching by grasping on a stick and perching by hooking on a thin
board. To detect such locations in a point cloud, we used the Random
Sample Consensus (RANSAC) algorithm based on parameterized
shape templates, and the results are shown in Fig. 2. For detecting
resting locations, given that those actions rely on the customized contact
modules, the detection is also based on the shapes of contact modules.
As depicted in Fig. 7, the fast point feature histograms (FPFHs) were
extracted from both the environment point cloud and the contactmod-
ules. Thereafter, we tried to register the contactmodules to feasible loca-
tions in the environment and optimized the results using the iterative
closest point (ICP) algorithm.

Once a perching or resting location was found, it needed to be ver-
ified by two additional steps. Because the UAV always approached
those locations from top-down in an upright pose,we checkedwhether
the surrounding area was collision free and whether the area allowed
top-down approaching motions. As a negative example, for resting on
an edge, the UAV could not stabilize itself by making contacts on the
side edges of a box or a building; the edge had to be on top and approx-
imately horizontal. Once a perching or resting location was confirmed,
the coordinates of it were transformed to the VICON system, and the
UAV navigated to apply the action.

Perching and resting control
To execute the actions for perching and resting, we applied a flight
controller that mixed the position control and the attitude control of
the UAV in a cascaded manner. The details of the controller design
are provided in appendix S1. For perching actions, the UAV first nav-
igated to the desired location; once the grasping or hooking actionswere
applied, the UAV turned off all rotors and stayed in the perchingmode.
If the UAV needed to turn over, we applied a proportional angular
velocity controller to realize a smooth motion.

For resting actions, the UAV also needed to first navigate to the
desired location. However, differently from the perching actions, the
UAV only turned off or slowed down some of the rotors. In cases
when one side of the UAV could totally rest on some structures, such
as edge resting, the rotors at the corresponding side were turned off,
and the rest of the rotors could still work to support the weight. In

another case when the UAV could not totally rest on any side, such
as the stand-resting, the UAV could slow down the rotors but still
needed some lift to keep the balance.

In both of the above cases, we aimed at minimizing the power
consumption to stabilize the UAV at the desired pose. This was
achieved through the cascaded controller using a shifted reference
point. Concretely, denoted by p ∈ ℝ3, the location of the UAV at the
resting location, if we command the UAV to stay at p, the rotors will
still work at full speed to realize the precise pose control. To auto-
matically slow down the rotors while keeping the UAV at the desired
resting pose to stabilize contacts, we introduced a shifting factor Dr ∈
ℝ3 to shift the reference point toward the direction from which the
UAV will obtain the resting support. Once the UAV has reached the
resting location p, the reference point for the controller will be
shifted to p − Dr, and the rotors at the supported side will be stopped.
Because of the physical contacts, the UAV in practice was not able to
achieve the shifted reference. However, it slowed down the rotors to
try to approach p − Dr while keeping the pose upright. Additionally,
as the UAV tries to approach the shifted reference point, it will ac-
tively exert force at the contacts; this effect can further improve the
stability of resting actions.

Contact module design
The contact modules were used to passively stabilize the contacts be-
tween the landing gear and the resting locations. Therefore, we aimed
at generating contact modules with shapes that could maximally re-
semble the typical contact geometries available in the environment. To
keep the design general enough to accommodate as many scenarios as
possible, we adopted the fingertip design algorithm from (51).

Concretely, the contact module design was formulated as an op-
timization problem addressed in three steps. First, given a working
environment of the UAV, we provided the algorithm with a set of ex-
ample shape primitives, which were representatives for describing typ-
ical shape geometries in the working environment. Thereafter, as shown
in Fig. 8, by specifying a set of example contact poses, the algorithm
extracted a set of contact areas that could be potentially used for resting
contacts in the environment and represented them as point clouds. Sec-
ond, the algorithmautomatically determined the number of clusters and
then clustered the extracted contact areas into different groups in terms
of the geometric similarities between them. Last, modeled by a param-
eterized 3D surface for each contact module, the algorithm optimized
the module’s surface shape by minimizing the differences between the
surface and all the contact areas in the corresponding cluster. Hence, the
optimized contactmodule’s surfacemaximally resembled the geometric
features of the potential contacts and improved the stability of contacts
for the UAV to rest at the corresponding locations. For a more detailed
explanation of this algorithm, we refer the readers to (51).

In this procedure, the more example contact areas that were pro-
vided to the algorithm, themore potential clusters of contact areas were
produced, and so the number of designed contact modules. This en-
abled the UAVs to rest at a variety of different locations, because the
contact modules could be exchanged when working in different envi-
ronments. Additionally, although the designs aremaximally resembling
the geometric features of contact areas, there were always differences
between the designed contact module and the real contact locations
in the environment. To minimize the effects given by this difference,
we suggest fabricating the contact modules using soft materials so that
some small differences at contacts can be compensated to improve the
stability of contacts.
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SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/28/eaau6637/DC1
Appendix S1. Flight controller design.
Table S1. Weights of parts.
Movie S1. Perching and resting actions test.
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Autonomous robotic intracardiac catheter navigation 
using haptic vision
G. Fagogenis1, M. Mencattelli1, Z. Machaidze1, B. Rosa2, K. Price1, F. Wu3, V. Weixler1, M. Saeed1, 
J. E. Mayer1, P. E. Dupont1*

Although all minimally invasive procedures involve navigating from a small incision in the skin to the site of the 
intervention, it has not been previously demonstrated how this can be performed autonomously. To show that 
autonomous navigation is possible, we investigated it in the hardest place to do it—inside the beating heart. We 
created a robotic catheter that can navigate through the blood-filled heart using wall-following algorithms 
inspired by positively thigmotactic animals. The catheter uses haptic vision, a hybrid sense using imaging for both 
touch-based surface identification and force sensing, to accomplish wall following inside the blood-filled heart. 
Through in vivo animal experiments, we demonstrate that the performance of an autonomously controlled robot-
ic catheter rivaled that of an experienced clinician. Autonomous navigation is a fundamental capability on which 
more sophisticated levels of autonomy can be built, e.g., to perform a procedure. Similar to the role of automation 
in a fighter aircraft, such capabilities can free the clinician to focus on the most critical aspects of the procedure 
while providing precise and repeatable tool motions independent of operator experience and fatigue.

INTRODUCTION
Minimally invasive surgery reduces the trauma associated with tradi-
tional open surgery, resulting in faster recovery time, fewer wound 
infections, reduced postoperative pain, and improved cosmesis (1). 
The trauma of open-heart surgery is particularly acute because it 
involves cutting and spreading the sternum to expose the heart. 
Nonetheless, an important additional step to reducing procedural 
trauma and risk in cardiac procedures is to develop ways to perform 
repairs without stopping the heart and placing the patient on cardio-
pulmonary bypass.

To this end, many specialized devices have been designed that rep-
licate the effects of open surgical procedures, but which can be de-
livered by catheter. These include transcatheter valves (2), mitral valve 
neochords (3), occlusion devices (4), stents (5), and stent grafts (6). 
To deploy these devices, catheters are inserted either into the vascula-
ture (e.g., femoral vein or artery) or, via a small incision between the 
ribs, directly into the heart through its apex.

From the point of insertion, the catheter must be navigated to 
the site of the intervention inside the heart or its vessels. Beating- 
heart navigation is particularly challenging because blood is opaque 
and cardiac tissue is moving. Despite the difficulties of navigation, 
however, the most critical part of the procedure is device deploy-
ment. This is the component when the judgment and expertise of 
the clinician are most crucial. Much like the autopilot of a fighter 
jet, autonomous navigation can relieve the clinician from performing 
challenging, but routine, tasks so that they can focus on the mission- 
critical components of planning and performing device deployment.

To safely navigate a catheter, it is necessary to be able to determine 
its location inside the heart and to control the forces it applies to the 
tissue. In current clinical practice, forces are largely controlled by 
touch, whereas catheter localization is performed using fluoroscopy. 
Fluoroscopy provides a projective view of the catheter, but it does 

not show soft tissue and exposes the patient and clinician to radiation. 
Ultrasound, which enables visualization of soft tissue and catheters, 
is often used during device deployment, but the images are noisy 
and of limited resolution. In conjunction with heart motion, this 
makes it difficult to precisely position the catheter tip with respect 
to the tissue.

The limitations of existing cardiac imaging prompted us to seek 
an alternate approach. In nature, wall following—tracing object 
boundaries in one’s environment—is used by certain insects and 
vertebrates as an exploratory mechanism in low-visibility conditions 
to ameliorate their localization and navigational capabilities in the 
absence of visual stimuli. Positively thigmotactic animals, which 
attempt to preserve contact with their surroundings, use wall 
following in unknown environments as an incremental map-building 
function to construct a spatial representation of the environment. 
Animals initially localize new objects found by touch in an egocentric 
manner, i.e., the object’s relative position to the animal is estimated; 
however, later, more complex spatial relations can be learned, func-
tionally resembling a map representation (7, 8). These animals 
often sample their environment by generating contact such as 
through rhythmically controlled whisker motion, as reported in ro-
dents (9), or antennae manipulations in cockroaches (10) and blind 
crayfish (11).

RESULTS
Inspired by this approach, we designed positively thigmotactic 
algorithms that achieve autonomous navigation inside the heart by 
creating low-force contact with the heart tissue and then following 
tissue walls to reach a goal location. To enable wall following while 
also locally recapturing the detailed visual features of open surgery, 
we introduced a sensing modality at the catheter tip that we call 
“haptic vision.” Haptic vision combines intracardiac endoscopy, 
machine learning, and image processing algorithms to form a hy-
brid imaging and touch sensor—providing clear images of whatever 
the catheter tip is touching while also identifying what it is touching 
(e.g., blood, tissue, and valve) and how hard it is pressing (Fig. 1A). 
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We used haptic vision as the sole sensory input to our navigation 
algorithms to achieve wall following while also controlling the forces 
applied by the catheter tip to the tissue. We evaluated autonomous 
navigation through in vivo experiments and compared it with operator- 
controlled robot motion and with manual navigation.

For wall following, we exploited the inherent compliance of the 
catheter to implement two control modes based on continuous and 
intermittent contact. Continuous contact can often be safely main-
tained over the cardiac cycle when the catheter tip is pressed laterally 
against the tissue because catheters are highly compliant in this 
direction (Fig. 1B). Intermittent contact can be necessary when 
there is substantial tissue motion and the catheter is pressed against 
the tissue along its stiffer longitudinal axis (Fig. 1C).

In both the continuous and the intermittent contact modes, the 
robot acted to limit the maximum force applied to the tissue using a 
haptic vision–based proxy for force. In the continuous contact mode, 
catheter position with respect to the tissue surface was adjusted 
to maintain a specified contact area on the catheter tip (Fig. 1B) 
corresponding to a desired force. In the intermittent contact mode, 
catheter position with respect to the tissue surface was adjusted to 
maintain a desired contact duty cycle—the fraction of the cardiac 
cycle during which the catheter was in tissue contact (Fig. 1C). The 
relationship between contact duty cycle and maximum force was 
investigated experimentally as described in the section below titled 
“In-vivo calibration of contact duty cycle versus maximum tissue 
force.” Complex navigation tasks can be achieved by following a 
path through a connectivity graph (Fig. 1D) and selecting between 
continuous and intermittent contact modes along that path based 
on contact compliance and the amplitude of tissue motion.

We have implemented autonomous navigation based solely on 
haptic vision sensing and demonstrated the potential of the 
approach in the context of a challenging beating-heart procedure, 
aortic paravalvular leak closure. Paravalvular leaks occur when a 
gap opens between the native valve annulus and the prosthetic valve 
(12, 13). Transcatheter leak closure involves sequentially navigating a 
catheter to the leak, passing a wire from the catheter through the gap, 
and then deploying an expanding occluder device inside the gap 
(Fig. 2A). This procedure is currently manually performed using 
multimodal imaging (electrocardiogram-gated computed tomographic 
angiography, transthoracic and transesophageal echo preoperatively, 
and echocardiography and fluoroscopy intraoperatively) and 
requires 29.9 ± 24.5 min of fluoroscopic x-ray exposure (14).

To perform paravalvular leak closure, we designed a robotic 
catheter (Fig. 2B) for entering through the apex of the heart into 
the left ventricle, navigating to the aortic valve and deploying 
an occluder into the site of a leak (Fig. 1D). We created a porcine 
paravalvular leak model by replacing the native aortic valve with a 
bioprosthetic valve incorporating three leaks (Fig. 2C). Using leak 
locations determined from preoperative imaging, the catheter could 
either navigate autonomously to that location, or the clinician could 
guide it there (Fig. 2B). Occluder deployment was performed under 
operator control.

During autonomous catheter navigation to the leak location, 
both continuous and intermittent contact modes were used (Fig. 1D). 
For navigation from the heart’s apex to the aortic valve, the robot 
first located the ventricular wall (a ➔ b) and then followed it to the 
aortic valve using the continuous contact mode (b ➔ c). Because the 
valve annulus displaces by several centimeters over the cardiac cycle 
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for a specified fraction, D, of the cardiac period (contact duty cycle). Insets show corresponding haptic vision images in and out of contact. Maximum contact force relates 
to contact duty cycle, D, as shown on plot and is controlled by small catheter displacements orthogonal to the heart wall. (D) Wall-following connectivity graph. Vertices, 
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a ➔ b ➔ ci′ ➔ ci, i = {1,2,3}.
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along the axis of the catheter, the robot switched to the intermittent 
contact mode once it detected that it had reached the aortic valve. It 
then navigated its tip around the perimeter of the valve annulus to the 
leak location specified from preoperative imaging (ci′ ➔ ci; Fig. 1D, 
inset).

Switching between continuous and intermittent contact modes 
depends on the robot recognizing the tissue type it is touching. We 
implemented the capability for the catheter to distinguish the prosthetic 
aortic valve from blood and tissue using a machine learning classification 
algorithm. The classification algorithm first identified a collection of 
“visual words,” which consisted of visual features shared between multiple 
images in a set of prelabeled training images, and learned the relationship 
between how often these visual features occurred and what the image 
depicted—in this case, the prosthetic valve or blood and tissue. 
Implementation details and performance evaluation of the classification 
algorithm can be found in the Materials and Methods.

Navigation on the annulus of the 
aortic valve to the location of a leak re-
quires two capabilities. The first is to 
maintain the appropriate radial distance 
from the center of the valve. The second 
is to be able to move to a specified angu-
lar location on the annulus. For robust 
control of radial distance, we integrated 
colored sutures into the bioprosthetic 
valve annulus that enable the naviga-
tion algorithm to compute the tangent 
direction of the annulus (Fig.  2C). 
Moving to a specific angular location 
requires the robot to estimate its cur-
rent location on the annulus, to deter-
mine the shortest path around the valve 
to its target location, and to detect when the 
target has been reached. We programmed 
the robot to build a geometric model 
of the valve as it navigates. On the basis of 
the estimated tangent direction of the 
valve annulus, as well as basic knowl-
edge of the patient and robot position 
on the operating table, the robot could 
estimate its clock face position on the 
valve (Fig. 2C). To account for valve rota-
tion relative to the robot due to variability 
in patient anatomy and positioning, we 
incorporated radially oriented colored 
registration sutures spaced 120° apart. 
As the catheter navigated along the 
annulus and detected the registration 
sutures, it updated its valve model to 
refine the estimate of its location on the 
valve.

To evaluate the autonomous naviga-
tion algorithms, we performed in vivo 
experiments comparing autonomous 
navigation with teleoperated (i.e., joystick- 
controlled) robotic navigation. We also 
compared these two forms of robotic 
navigation with our results in (15), de-
scribing manual navigation of a handheld 

catheter. In all cases, the only sensing used consisted of the video 
stream from the tip-mounted endoscope, kinesthetic sensing of the 
robot/human, and force sensing of the human (handheld). At the 
end of each experiment, we opened the heart, examined the ventricular 
walls for bruising or other tissue damage, and found none.

We first compared success rate and navigation time for autonomous 
navigation (Fig. 1D, a ➔ b ➔ ci′) from the apex of the left ventricle 
to the aortic annulus (five animals, 90 trials), with teleoperated con-
trol (three animals, 9 trials) and with manual control (three animals, 
13 trials; Fig. 3A). Autonomous navigation consisted of first moving 
to a wall of the ventricle specified by clock position (Fig. 2C) and 
then following that wall to the valve using the continuous contact 
control mode. Autonomous navigation was successful 99% of 
the time (89 of 90 trials). Autonomous control was faster than tele-
operated control and with a smaller variance but slower than manual 
control.
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Fig. 2. Paravalvular leak closure experiments. (A) Current clinical approach to paravalvular leak closure: image 1, 
catheter approaches valve; image 2, wire is extended from catheter to locate leak; image 3, vascular occluder is 
deployed inside leak channel. Although transapical access is illustrated, approaching the valve from the aorta via 
transfemoral access is common. (B) Robotic catheter in operating room. Graphical interface displays catheter tip view 
and geometric model of robot and valve annulus. (C) Two views of bioprosthetic aortic valve designed to produce 
three paravalvular leaks at 2, 6, and 10 o’clock positions. Blue sutures are used to detect tangent to annulus. Green 
sutures are used to estimate valve rotation with respect to robot. (D) Vascular occluder (AMPLATZER Vascular Plug II, 
St. Jude Medical, Saint Paul, MN) used to plug leaks.
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Next, we investigated the ability of the controller to navigate 
completely around the valve annulus using the intermittent contact 
mode (e.g., c1′ ➔ c1 ➔ c2 ➔ c3′ ➔ c2′ ➔ c3 ➔ c1′; Fig. 1D, inset). This is 
substantially more challenging than what is required for paravalvular 
leak closure because, for leak closure, our algorithms enable the 
catheter to follow the ventricular wall in a direction that positions 
the catheter at an angular position on the valve that is close to the 
leak. For example, to reach c1 in Fig. 1D, the catheter could follow 
the path a ➔ b ➔ c1′ ➔ c1. For circumnavigation of the annulus, we 
compared autonomous control (three animals, 65 trials) with a 
handheld catheter (three animals, 3 trials) and with two forms of 
teleoperation (Fig. 3B). The first consisted of standard teleoperated 
control (one animal, 9 trials). The second corresponds to autono-

mous operator assistance (one animal, 10 trials). In the latter, the 
robot automatically controlled motion perpendicular to the plane 
of the valve to achieve a desired contact duty cycle, whereas the 
human operator manually controlled motion in the valve plane. 
Autonomous valve circumnavigation was successful 66% of the 
time (43 of 65 trials). Manual and teleoperated control had 100% 
success rates because the human operator, a clinician, could inter-
pret and respond to unexpected situations. For this task, teleoperation 
was faster than autonomous and manual navigation, with assisted 
teleoperation being the fastest (Fig. 3B). Autonomous control was 
the slowest, taking over twice as long as manual control.

We then compared controller performance for the complete 
paravalvular leak navigation task (Fig. 1D; a ➔ b ➔ ci′ ➔ ci), in 

10

20

30

40

50

60

70

80

90

100

Handheld Teleoperation Autonomous

P=0.22

P=1.00
P=0.28

2

4

6

8

10

12

14

16

18

20

Handheld Teleoperation Autonomous

P=0.01

P=0.89

Handheld Teleoperation
Assisted 

Teleoperation
Autonomous

50

100

150

200

250

T
im

e
 (

s)

P=0.03

P<0.0001

P<0.0001

AA BB

CC

100

200

300

400

500

0

P=0.78

P=0.84

DD

Handheld Teleoperation Autonomous

Ti
m

e
 (

s)

T
im

e
 (

s)
Ti

m
e
 (

s)

Fig. 3. In vivo navigation completion times. (A) Navigation from apex of the left ventricle to the aortic annulus (Fig. 1D, a ➔ b ➔ c). (B) Circumnavigation of the entire 
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which the catheter started at the heart’s apex, approached the ventric-
ular wall in a user-provided direction, moved to the aortic annulus 
along the ventricular wall, and then followed the annulus to the 
prespecified leak position (five animals, 83 trials). We chose the 
direction along the ventricular wall so that the catheter would arrive 
on the valve at a point ci′, close to the leak ci, but such that it would 
still have to pass over at least one registration marker to reach the 
leak. Autonomous navigation was successful in 95% of the trials (79 
of 83) with a total time of 39 ± 17 s compared with times of 34 ± 29 s 
for teleoperation (three animals, 9 trials) and 31 ± 27 s for manual 
navigation (three animals, 13 trials) (see Fig. 3C). Note that for tele-
operated and manual navigation, the operator was not required to 
follow a particular path to a leak.

For autonomous navigation, we also evaluated how accurately 
the catheter was able to position its tip over a leak. In the first three 
experiments, valve rotation with respect to the robot was estimated by an 
operator before autonomous operation. In the last two experiments, 
valve rotation was estimated by the robot based on its detection of 
the registration sutures. The distance between the center of the 
catheter tip and the center of each leak was 3.0 ± 2.0 mm for operator- 
based registration (three animals, 45 trials) and 2.9 ± 1.5 mm for 
autonomous estimation (two animals, 38 trials) with no statistical 
difference between methods (P = 0.8262, Wilcoxon rank sum). This 
error is comparable with the accuracy to which a leak can be localized 
on the basis of preoperative imaging.

To ensure that autonomous navigation did not affect occluder 
delivery, we performed leak closure after autonomous, teleoperated, 
and manual navigation. The time to close a leak was measured from 
the moment either the robot or the human operator signaled that 
the working channel of the catheter was positioned over the leak. 
Any time required by the operator to subsequently adjust the location 
of the working channel was included in closure time (Fig. 3D). Leak 
closure was successful in 8 of 11 trials (autonomous navigation), 7 
of 9 trials (teleoperation), and 11 of 13 trials (manual navigation). 
The choice of navigation method produced no statistical difference 
in closure success or closure time.

DISCUSSION
Our primary result is that autonomous navigation in minimally 
invasive procedures is possible and can be successfully implemented 
using enhanced sensing and control techniques to provide results 
comparable with expert manual navigation in terms of procedure 
time and efficacy. Furthermore, our experiments comparing clinician- 
controlled robotic navigation with manual navigation echo the 
results obtained for many medical procedures—robots operated by 
humans often provide no better performance than manual proce-
dures except for the most difficult cases and demanding procedures 
(16, 17). Medical robot autonomy provides an alternative approach 
and represents the way forward for the field (18–21).

Benefits of autonomous navigation
Automating such tasks as navigation can provide important benefits 
to clinicians. For example, when a clinician is first learning a procedure, 
a significant fraction of their attention is allocated to controlling 
instruments (e.g., catheters and tools) based on multimodal imaging. 
Once a clinician has performed a large number of similar proce-
dures with the same instruments, the amount of attention devoted 
to instrument control is reduced. By using autonomy to relieve the 

clinician of instrument control and navigation, the learning curve 
involved in mastering a new procedure could be substantially 
reduced. This would be of significant benefit during initial clinical 
training, and it may also enable midcareer clinicians to adopt new 
minimally invasive techniques that would otherwise require too 
much retraining. In addition, even after a procedure is mastered, 
there are many situations where an individual clinician may not 
perform a sufficient number of procedures to maintain mastery of 
it. In all of these cases, autonomy could enable clinicians to operate 
as experts with reduced experience- and fatigue-based variability.

There are also many places in the world where clinical specialties 
are not represented. Although medical robots can provide the capa-
bility for a specialist to perform surgery remotely (22), this approach 
requires dedicated high-bandwidth two-way data transfer. Trans-
mission delays or interruptions compromise safety owing to loss of 
robot control. In these situations, autonomy may enable stable and 
safe robot operation even under conditions of low-bandwidth or 
intermittent communication. Autonomy may also enable the robot 
to detect and correct for changing patient conditions when commu-
nication delays preclude sufficiently fast reaction by the clinician.

Autonomy also enables, to an unprecedented degree, the capability 
to share, pool, and learn from clinical data (23–25). With teleoperated 
robots, robot motion data can be easily collected, but motions are 
being performed by clinicians using different strategies, and the 
information they are using to guide these strategies may not all be 
known, let alone recorded. In contrast, the sensor data streaming to 
an autonomous controller are well defined, as is its control strategy. 
This combination of well-defined input and output data, together 
with known control strategies, will make it possible to standardize 
and improve autonomous technique based on large numbers of 
procedural outcomes. In this way, robot autonomy can evolve by 
applying the cumulative experiential knowledge of its robotic peers 
to each procedure.

Limitations
We demonstrated that haptic vision combined with biologically 
inspired wall following serve as an enabling method for autonomous 
navigation inside the blood-filled heart. The haptic vision sensor 
provides a high-resolution view of the catheter tip—which is exactly 
the view needed for both wall following and device deployment. 
The sensor, combined with its machine learning and image processing 
algorithms, enables the robot to distinguish what it is touching and 
to control its contact force.

After initial wall-following exploration, blinded animals, as well 
as people, have been observed to use their environmental map to 
create shortcuts through free space (7, 8, 26, 27). Although not for-
mally studied, we observed similar behavior in our previously pub-
lished experiments with a handheld instrument (15). During initial 
use of the instrument, the clinician navigated from the apex to the 
aortic annulus using wall following. Once familiar with the proce-
dure, however, the clinician would usually attempt to move directly 
through the center of the ventricle to the annulus. If the annulus 
was not found where they expected it to be, then they would retract 
the instrument, search for the ventricular wall, and follow it to the 
annulus. Although we did not attempt this more advanced form of 
navigation, it is worthy of future study because it is likely to lead to 
faster performance and facilitate safe navigation through valves.

The most challenging part of our in vivo navigation plan was 
moving along the aortic valve annulus. Whereas the success rate of 
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the overall navigation task was 95%, complete circumnavigation of 
the annulus was successful only 66% of the time. This lower success 
rate is not a limitation of wall following but rather reflects our deci-
sion to make annular navigation only as robust as necessary to 
achieve high overall task success. In particular, a primary failure 
mode of circumnavigation corresponded to the catheter tip experi-
encing simultaneous lateral contact with the ventricular wall and tip 
contact with the valve. This uncontrolled lateral contact led to the 
catheter becoming stuck against the ventricular wall. By adding a 
new control mode considering simultaneous tip and lateral contacts, 
circumnavigation could be made much more robust. Furthermore, 
although we limited navigational sensing to haptic vision to evaluate 
its capabilities, the use of additional sensing modalities and more 
sophisticated modeling and control techniques is warranted for 
clinical use.

We used transapical access in our experiments because it allowed 
us to focus on the most challenging navigation problem: performing 
precise motions inside a pulsating three-dimensional (3D) volume 
containing complex moving features. For clinical use, the proposed 
approach should be extended to enable autonomous navigation 
starting from the femoral artery. Such vascular navigation is a 
straightforward extension of our proposed approach and can be 
performed with our continuous contact control mode. It would 
involve following 1D curves using a wall-following connectivity 
graph (Fig. 1D) mapping the branching of the vascular network.

Future directions
Wall-following autonomous navigation is extensible to many mini-
mally invasive procedures, including those in the vasculature, 
airways, gastrointestinal tract, and ventricular system of the brain. 
Even in the absence of blood or bleeding, haptic vision, potentially 
augmented with other sensing modalities, can be used to mediate 
tissue contact. The sequence of wall contacts defining a navigational 
plan is based on anatomical topology but not on anatomical dimensions. 
Consequently, wall-following plans are largely patient independent 
but can be adapted as needed for anatomical variants based on pre-
operative imaging. As demonstrated with our bioprosthetic aortic 
valve, previously deployed devices can serve as navigational way 
points and can incorporate visual features as navigational aids.

Clinical translation
Clinical translation of autonomy does not require that the robot 
be capable of completing its task in every possible circumstance. In-
stead, it needs to satisfy the lesser requirement of knowing when it 
cannot complete a task and should ask for help. Initially, this frame-
work would enable the robot to perform the routine parts of a pro-
cedure, as demonstrated here for navigation, and so enable clinicians 
to focus on planning and performing the critical procedural compo-
nents. Ultimately, as autonomous technology matures, the robot can 
expand its repertoire into more difficult tasks.

MATERIALS AND METHODS
The goal of the study was to investigate the feasibility of performing 
autonomous catheter navigation for a challenging intracardiac pro-
cedure in a preclinical porcine in vivo model. To perform this study, 
we designed and built a robotic catheter and haptic vision sensor. 
We also designed and wrote control algorithms, enabling the catheter 
to navigate either autonomously or under operator control. For our 

in vivo experiments, we chose transapical paravalvular leak closure 
as a demonstration procedure and compared autonomous and 
operator-controlled navigation times with each other and with pre-
vious results using a handheld catheter. For autonomous navigation, 
we also measured the distance between the final position of the 
catheter tip and the actual location of the leak.

Robotic catheter
Catheter design
We designed the catheter using concentric tube robot technology in 
which robots are composed of multiple needle-sized concentrically 
combined precurved superelastic tubes. A motorized drive system 
located at the base of the tubes rotated and telescopically extended 
the tubes with respect to each other to control the shape of the cath-
eter and its tip position (movie S1) (28, 29). The drive system was 
mounted on the operating room table using a passively adjustable 
frame that allowed the catheter tip to be positioned and oriented for 
entry into the apex (Fig. 2B).

Tools and devices were delivered through the lumen of the 
innermost robot tube, which incorporated a valve and flush system 
at its proximal end. This system enabled the catheter lumen to be 
flushed with saline to prevent air entry into the heart and to prevent 
pressurized blood from the heart from entering the lumen of the 
catheter. We used a design optimization algorithm to solve for the 
tube parameters based on the anatomical constraints and clinical 
task (aortic paravalvular leak closure) (30). The anatomical and task 
constraints were defined using a 3D model of an adult human left 
ventricle (Fig. 4). Because the relative dimensions of the human and 
porcine hearts are similar, the resulting design was appropriate for 
our in vivo experiments. The design algorithm solved for the tube 
parameters enabling the catheter tip to reach from the apex of the 
heart to a set of 25 uniformly sampled points around the aortic 
valve annulus without the catheter contacting the ventricular wall 
along its length. The orientation of the catheter tip was further con-
strained at the 25 points to be within 10° of orthogonal to the valve 
plane. The resulting design was composed of three tubes forming 
two telescoping sections with motion as shown in movie S1. The 
tube parameters of the robotic catheter are given in Table 1.
Haptic vision sensor design
We fabricated the sensor (Fig. 1A) using a 1-mm3 complementary 
metal-oxide semiconductor camera (NanEye Camera System, 
AWAIBA) and a 1.6 mm by 1.6 mm light-emitting diode (LED) 
(XQ-B LED, Cree Inc.) encased in an 8-mm-diameter silicone optical 
window (QSil 218, Quantum Silicones LLC.) molded onto a stainless- 
steel body (15). The optical window diameter was selected to provide 
a field of view facilitating both autonomous and operator-guided 
navigation. The sensor also incorporated a 2.5-mm-diameter working 
channel for device delivery. The system clamped to the tip of the 
catheter such that the lumen of the innermost catheter tube aligned 
with the endoscope working channel. Although we have also designed 
catheters in which the sensor wiring was run through the catheter 
lumen, in these experiments, the wiring for the camera and LED 
were run outside the catheter so that the sensor could be replaced 
without disassembling the robotic catheter.
Computer software design
The software was executed on two PCs. One was used for catheter 
motion control [Intel Core Quad CPU Q9450@2.66 GHz with 4-GB 
random-access memory (RAM)], whereas the second was used to 
acquire and process images from the haptic vision sensor (Intel 
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Core i7-6700HQ CPU@2.6 GHz with 16-GB RAM). The two com-
puters exchanged information at runtime via transmission control 
protocol/internet protocol. The motion control computer received 
real-time heart rate data by serial port (Advisor, SurgiVet) and was 
also connected through universal serial bus to a six-DOF joystick 
(Touch, 3D Systems) that was used during teleoperated control 
of catheter motion. The motion control computer could execute 
either the autonomous navigation algorithms or the joystick motion 
commands. In either case, catheter tip motion commands were 
converted to signals sent to the motor amplifiers of the catheter 
drive system.
Robotic catheter control
The catheter control code converting desired catheter tip displace-
ments to the equivalent rotations and translations of the individual 
tubes was written in C++. The code was based on modeling the 
kinematics using a functional approximation (truncated Fourier 
series) that was calibrated offline using tip location data collected 
over the workspace (28). The calibrated functional approximation 
model had been previously demonstrated to predict catheter tip 
position more accurately (i.e., smaller average and maximum pre-
diction error) over the workspace compared with the calibrated 
mechanics-based model (31). Catheter contact with tissue along its 
length produced unmodeled and unmeasured deformations that 
must be compensated for via tip imaging. A hierarchical control 
approach was used (32) to ensure that the desired tip position was 
given a higher priority than the desired orientation if both criteria 
could not be satisfied simultaneously.
Haptic vision–based contact classification
To perform wall following, we designed a machine learning–based 
image classifier that can distinguish between blood (no contact) or 

ventricular wall tissue and the bioprosthetic aortic valve. The algo-
rithm used the bag-of-words approach (33) to separate images into 
groups (classes) based on the number of occurrences of specific fea-
tures of interest. During training, the algorithm determined which 
features were of interest and the relationship between their number 
and the image class. For training, we used OpenCV to detect fea-
tures in a set of manually labeled training images. Next, the detected 
features were encoded mathematically using LUCID descriptors for 
efficient online computation (34). To reduce the number of features, 
we identified the optimal feature representatives using clustering 
(k-means). The resulting cluster centers were the representative fea-
tures used for the rest of the training, as well as for runtime image 
classification. Having identified the set of representative features, 
we made a second pass through the training data to build a feature 
histogram for each image by counting how many times each repre-
sentative feature appeared in the image. The final step was to train a 
support vector machine (SVM) (35) classifier that learned the rela-
tionship between the feature histogram and the corresponding 
class.

Using the trained algorithm, image classification proceeded by 
first detecting features and computing the corresponding LUCID 
descriptors. The features were then matched to the closest represen-
tative features, and the resulting feature histogram was constructed. 
On the basis of the histogram, the SVM classifier predicted the tissue- 
based contact state. We achieved good results using a small set of 
training images (~2000 images) with training taking ~4 min. Be-
cause image classification took 1 ms, our haptic vision system esti-
mated contact state at the frame rate of the camera (45 frames/s). 
The contact classification algorithm was accurate 97% of the time 
(tested on 7000 images not used for training) with type I error (false 
positive) of 3.7% and type II (false negative) of 2.3%.
Continuous contact navigation algorithm
When the catheter was positioned laterally against cardiac tissue, 
its flexibility could enable continuous contact to be maintained with-
out applying excessive force to the tissue. We used haptic vision to 
control the amount of tissue contact by controlling catheter motion 
in the direction orthogonal to the tissue surface. Catheter motion 
in the plane of the tissue surface was independently controlled so as to 
produce wall following at the desired velocity and in the desired di-
rection. The controller was initialized with an estimate of wall location 

Fig. 4. Algorithmic robotic catheter design. (A) Computer model of optimized 
design composed of three tubes shown in adult left ventricle. Robot enters heart 
through apex and is depicted at 12 locations on the aortic annulus. (B) Fabricated 
catheter with haptic vision sensor shown inside 3D printed model of heart shown 
in (A). (C) Disassembled catheter showing its three precurved superelastic tubes. 
Tube parameters are given in Table 1.

Table 1. Optimized parameter values for three tubes comprising the 
robotic catheter. Tube sections are labeled in Fig. 4B. 

Tube 1 Tube 2 Tube 3

Section 1 Section 1 Section 1 Section 2

Outer  
diameter (mm)

2.77 2.40 1.875 1.875

Inner  
diameter (mm)

2.54 2.00 1.60 1.60

Section  
length (mm)

72.0 72.0 55.0 72.0

Radius of 
curvature (mm)

150 150 40.0 ∞ (straight)

Relative bending 
stiffness

0.995 0.995 0.338 0.338
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so that if it was not initially in tissue contact, it moved toward the 
wall to generate contact. This occurred in our in vivo experiments 
during navigation from the apex to the aortic valve. The catheter 
started in the center of the apex with the haptic vision sensor detect-
ing only blood. It would then move in the direction of the desired 
wall (Fig.  1D, a ➔ b), specified using valve clock coordinates 
(Fig.  2C), to establish contact and then follow that wall until it 
reached the valve.

When the haptic vision sensor was pressed laterally against the 
tissue, the tissue deformed around the sensor tip so that it covered 
a portion of the field of view (Fig. 1B). The navigation algorithm 
adjusted the catheter position orthogonal to the tissue surface to 
maintain the centroid of the tissue contact area within a desired 
range on the periphery of the image, typically 30 to 40%. We imple-
mented tissue segmentation by first applying a Gaussian filter to 
reduce the level of noise in the image. Next, we segmented the tis-
sue using color thresholding on the hue saturation value (HSV) 
and the CIE L*a*b* representations of color images. The result was 
a binary image, where white pixels indicated tissue. Last, we per-
formed a morphological opening operation to remove noise from 
the binary image. After segmentation, the tissue centroid was com-
puted and sent to the motion control computer. Image processing 
speed was sufficient to provide updates at the camera frame rate 
(45 frames/s).
Intermittent contact navigation algorithm
When a catheter is stiff along its longitudinal axis and positioned 
orthogonal to a tissue surface that moved significantly in the direction 
of this axis over the cardiac cycle, the contact forces can become 
sufficiently high so as to result in tissue damage or puncture. To main-
tain contact forces at safe levels, one approach is to design the catheter 
so that it can perform high-velocity trajectories that move the robotic 
catheter tip in synchrony with the tissue (36). We used an alternative 
technique requiring only slow catheter motion so as to position the 
tip such that it was in contact with the tissue for a specified fraction of 
the cardiac cycle, the contact duty cycle, D (Fig. 1C). As described in 
the section below titled “In-vivo calibration of contact duty cycle versus 
maximum tissue force,” the contact duty cycle was linearly related to 
the maximum contact force. The intermittent contact mode was used 
during navigation around the aortic valve annulus.

We implemented intermittent contact navigation using haptic 
vision to detect tissue contact and, combined with heart rate data, 
to compute the contact duty cycle at the frame rate of the camera 
(45 frames/s). We implemented a controller that adjusted catheter 
position along its longitudinal axis to drive the contact duty cycle to 
the desired value. Catheter motion in the plane of the tissue surface was 
performed either autonomously or by the operator (shared control 
mode). In the autonomous mode, catheter motion in the tissue 
plane was performed only during the fraction of the cardiac cycle 
when the haptic vision sensor indicated that the catheter was not 
touching tissue. This reduced the occurrence of the catheter tip 
sticking to the tissue surface during wall following.
Autonomous navigation on the valve annulus
Intermittent contact control was used to control catheter motion 
orthogonal to the plane of the annulus. The desired value of contact 
duty cycle was typically set to be ~40%. Thus, 40% of the cardiac 
cycle was available for image processing (during contact), whereas 
the motion in the plane of the annulus was performed during the 
60% noncontact portion of the cardiac cycle. During contact, the 
robot detected the blue tangent sutures on the valve (Fig. 2C) using 

color thresholding in the HSV color space and computed the cen-
troid of the detected sutures. Next, a Hough transform on the 
thresholded image was used to estimate the tangent of the aortic 
annulus. During the noncontact portion of the cardiac cycle, the 
algorithm generated independent motion commands in the radial 
and tangential directions. In the radial direction, the catheter 
adjusted its position such that the centroid of the detected sutures 
was centered in the imaging frame. Motion in the tangential direc-
tion was performed at a specified velocity. While navigating around 
the valve, the robot incrementally built a map of the location of the 
annulus in 3D space based on the centroids of the detected sutures 
and the catheter tip coordinates as computed using the robot kine-
matic model. The model was initialized with the known valve diameter 
and the specified direction of approach. By comparing the current 
tangent with the model, the robot estimated its clock position on 
the annulus. Although not implemented, this model may also be 
used to estimate the valve tangent and radial position in situations 
where the sutures are not well detected.
Registration of valve rotation with respect to the robot
We assumed that paravalvular leaks have been identified in pre-
operative imaging, which also indicated their location relative to the 
features of the bioprosthetic valve, e.g., leaflet commissures. In the 
ventricular view of the valve annulus provided by haptic vision, 
such features are hidden. Although the model built during annular 
navigation defines the coordinates of the annulus circle in 3D space, 
there was no means to refine the initial estimate of where 12 o’clock 
fell on the circle, i.e., to establish the orientation of the valve about 
its axis. To enable the robot to refine its orientation estimate, we 
introduced registration features into the annulus composed of 
green sutures located at 4, 8, and 12 o’clock. During annular naviga-
tion, whenever the robot detected one of these features, it compared 
its actual location with the current prediction of the model and 
updated its estimate of valve rotation accordingly.
Endothelialization of blue and green sutures on the valve annulus
In clinical use, the sutures would remain visible for several months 
before endothelialization. Thus, they could be used for autonomous 
repair of paravalvular leaks that occur at the time of valve implantation 
or soon after, as is the case for transcatheter valves (12).
Autonomous navigation for paravalvular leak closure
The algorithm inputs are consisted of the clock-face leak location and the 
desired ventricular approach direction, also specified as a clock-face 
position. Starting from just inside the apex of the left ventricle, the 
catheter moved in the desired approach direction until it detected 
tissue contact. It then switched to continuous contact mode and per-
formed wall following in the direction of the valve. When the classifi-
er detected the bioprosthetic valve in the haptic vision image, the 
controller switched to intermittent contact mode and computed the 
minimum distance direction around the annulus to the leak location 
based on its initial map of the annulus. As the catheter moved around 
the annulus in this direction, its map was refined on the basis of the 
detection of tangent and registration sutures. Once the leak location 
was reached, the robot controller acted to maintain its position at this 
location and sent an alert to the operator. Using joystick control, the 
operator could then reposition the working channel over the leak as 
needed, and then, the occluder could be deployed.
Software development cycle
To develop and test our autonomous navigation algorithms, we 
implemented a development cycle composed of three steps: in silico 
simulation, ex vivo experiments, and in vivo experiments (Fig. 5). 
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We created a simulation engine that can replay time-stamped data, 
comprising haptic vision images and robot trajectories, recorded 
during in vivo cases. We used the simulation engine to implement 
new software functionality and to troubleshoot unexpected results 
from in vivo experiments. After simulation, we tested new func-
tionality on an ex vivo model comprising an explanted porcine 
heart, pressurized using a peristaltic pump (Masterflex Pump, 115 VAC). 
We immobilized the pressurized heart using sutures to attach it to a 
fixture. On the basis of the outcome of the ex vivo tests, we either 
performed additional simulations to refine the software implemen-
tation or proceeded to in vivo testing. This process was repeated it-
eratively for each algorithm as it was developed.

In vivo experiments
Surgical procedure
We created a porcine paravalvular leak model by implanting a cus-
tom bioprosthetic device (Fig. 2C) into the aortic valve position in 
84.3 ± 4.7 kg of Yorkshire swine. The device was designed with 
three sewing ring gaps evenly distributed around its circumference 
(120° apart) to produce the areas of paravalvular leakage. The bio-
prosthetic valve consists of a titanium frame covered by a nonwo-
ven polyester fabric. A polypropylene felt sewing ring is sutured to 
the frame around the annulus. Suture is passed through this ring 
when the valve is sewn in place inside the heart. Last, glutaraldehyde- 
fixed porcine pericardium leaflets are sutured to the frame (37).

Animal care followed procedures prescribed by the Institutional 
Animal Care and Use Committee. To implant the bioprosthetic valve, we 
premedicated the swine with atropine (0.04 mg/kg intramuscularly), 
followed by Telazol (4.4 mg/kg) and xylazine (2.2 mg/kg intravenously), 
and we accessed the thoracic cavity through a median sternotomy 

incision. We acquired epicardial echocardiographic images to deter-
mine the size of the valve to be implanted. Next, we initiated cardio-
pulmonary bypass by placing purse-string sutures for cannulation, 
cross-clamping the aorta, and infusing cardioplegia solution to 
induce asystole. We incised the aorta to expose the valve leaflets, 
which were then removed, and the artificial valve was implanted 
using nine 2-0 ETHIBOND valve sutures supra-annularly. At this 
point, we closed by suture the aortomy incision, started rewarming, and 
released the aortic cross-clamp. We maintained cardiopulmonary 
bypass to provide 35 to 50% of normal cardiac output to ensure 
hemodynamic and cardiac rhythm stability. The function of the im-
planted valve, as well as the leak locations and sizes, were determined 
by transepicardial short- and long-axis 2D and color Doppler echo-
cardiography. Apical ventriculotomy was then performed, with 
previous placement of purse-string sutures to stabilize the cardiac 
apex for the introduction of the robotic catheter. The catheter was 
introduced through the apex and positioned such that its tip was 
not in contact with the ventricular walls. All experiments in a group 
were performed using the same apical catheter position. Throughout 
the procedure, we continuously monitored arterial blood pressure, 
central venous pressure, heart rate, blood oxygenation, temperature, 
and urine output. At the end of the experiment, a euthanasia 
solution was injected, and we harvested the heart for postmortem 
evaluation.
Autonomous navigation from apex to valve
We performed experiments on five animals. For each animal, navigation 
was performed using three valve approach directions corresponding 
to 6 o’clock (posterior ventricular wall), 9 o’clock (ventricular septal 
wall), and 12 o’clock (anterior ventricular wall) (Fig. 2C). Of the 
90 total trials, the number performed in the 6, 9, and 12 o’clock di-
rections were 31, 32, and 27, respectively.
Autonomous circumnavigation of aortic valve annulus
Experiments were performed on three animals. In the first experi-
ment, a range of contact duty cycles was tested, whereas in the latter 
two experiments, the contact duty cycle was maintained between 
0.3 and 0.4. In all experiments, the tangential velocity was specified 
as 2 mm/s during those periods when the tip was not in contact with 
the valve and 0 mm/s when in contact.
Autonomous navigation from apex to paravalvular leaks
We performed experiments on five animals. As an initial step for all 
experiments, we built a 3D spatial model of the valve by exploring 
the valve with the catheter under operator control. We used this 
model, which is separate from the model built by the autonomous 
controller, to monitor autonomous navigation. For three animals, 
we also used this model to estimate valve rotation with respect to 
the robot and provided this estimate as an input to the autonomous 
navigation algorithm. In two animals, valve rotation was estimated 
autonomously on the basis of the valve model built by the naviga-
tion algorithm and its detection of registration sutures.

In each experiment, navigation trials were individually performed 
for each of the three leaks located at 2 o’clock (n = 28), 6 o’clock 
(n = 27), and 10 o’clock (n = 28) (Fig. 2C). For each leak location, we 
selected a clock direction to follow on the ventricular wall such that 
the catheter would arrive at the valve annulus close to the leak but far 
enough away that it would have to pass over registration sutures to 
reach the leak. In general, this corresponded to approaching the 
valve at 11, 9, and 1 o’clock to reach the leaks at 2 o’clock (clock-
wise), 6 o’clock (counter clockwise), and 10 o’clock (counter 
clockwise), respectively. If we observed that along these paths the 

simulation ex vivo

in vivo

Fig. 5. Software development cycle. In simulation, we replayed data from previous 
in vivo experiments to evaluate and debug software. New features were first imple-
mented in the simulator either to address previously identified in vivo challenges 
or to extend robot capabilities. New software was then tested in the ex vivo model 
to check the desired functionality and to ensure code stability. Identified problems 
were addressed by iterating between in silico and ex vivo testing. New software 
features were then assessed with in vivo testing. The design cycle was then com-
pleted by importing the in vivo data into the simulator and evaluating algorithm 
performance.
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annulus was covered by valve tissue or 
a suturing pledget, then we instructed 
the navigation algorithm to approach 
the leak from the opposite direction. 
Note that the mitral valve is located 
from 2 to 5 o’clock; the ventricular wall 
cannot be followed in these directions to 
reach the aortic valve. Thus, in one ex-
periment involving operator-specified 
valve registration, the clockwise-approach 
path was covered by tissue, and we 
chose to approach the leak directly from 
the 2 o’clock direction rather than start 
farther away at 6 o’clock.

We designed the registration sutures 
to be 120° apart under the assumption 
that valve rotation with respect to the 
robot would be less than ±60° from the 
nominal orientation. In one animal in 
which valve rotation was estimated au-
tonomously, however, the rotation an-
gle was equal to 60°. In this situation, it 
is impossible for either man or machine 
to determine whether the error is +60° 
or −60°. For these experiments, we shift-
ed the approach direction for the leak at 
6 o’clock from 9 to 8 o’clock so that the catheter would only see 
one set of registration sutures along the path to the leak. This ensured 
that it would navigate to the correct leak.
Occluder deployment
After navigation to the desired leak location, the operator took control 
of the catheter and, as needed, centered the working channel over the 
leak. A three-lobed vascular occluder (AMPLATZER Vascular Plug 
II, AGA Medical Corporation), attached to a wire and preloaded 
inside a delivery cannula, was advanced ~3 mm into the leak chan-
nel (Fig. 6). The cannula was then withdrawn, allowing the occluder 
to expand inside the leak channel. We then retracted the wire and ro-
botic catheter until the proximal lobe of the occluder was positioned 
flush with the valve annulus and surrounding tissue. If positioning 
was satisfactory, then the device was released by unscrewing it 
from the wire. If not, then the device was retracted back into the de-
livery cannula and the procedure was repeated as necessary.
In vivo calibration of contact duty cycle versus maximum 
tissue force
To investigate the relationship between maximum contact force 
and contact duty cycle, we designed a handheld instrument inte-
grating haptic vision and force sensing (Fig. 7). Force sensor inte-
gration was inspired by (38). The haptic vision sensor is mounted 
on a stiff tube that is supported by two polymer sliding bearings 
mounted inside the proximal handle. The proximal end of the shaft is 
connected to a force sensor. An outer cannula encloses the sensing 
shaft and extends from the handle to about 6 cm from the sensing 
tip. When the instrument is inserted into the apex of the heart, the 
outer cannula is in contact with the apical tissue, but the sensing 
tube is not. The gap between the outer cannula and sensing tube is 
filled with silicone grease to prevent blood flow from the heart into 
the instrument while generating minimal friction on the sensing 
tube. Calibration experiments indicated that the friction due to the 
bearings and grease was less than ±0.2 N.

We performed in vivo experiments in which we positioned the 
haptic vision sensor on the bioprosthetic valve annulus in locations 
where we could be sure that the sensor was experiencing contact only 
on its tip. At these locations, we collected force, heart rate, and haptic 
vision data (Fig. 7B). By manually adjusting instrument position along 
its axis, we were able to obtain data for a range of duty cycle values. The 
image and force data were collected at 46 Hz, and contact duty cycle 
based on valve contact was computed at each sampling time using a 
data window of width equal to the current measured cardiac period 
(~36 images). To remove high-frequency components not present 
in the force data, we then filtered the computed duty cycle using a 
121-sample moving average filter corresponding to ~3.4 heartbeats. 
The filtered input data and the output data (e.g., Fig. 7B) were then 
binned using duty cycle intervals of 0.05. Last, we computed the rela-
tionship between filtered contact duty cycle and maximum applied 
force by averaging the maximum forces for each binned duty cycle 
value (Fig. 7C). We computed the Pearson’s coefficient as a measure of 
linear relationship between the contact duty cycle and the maximum 
annular force. The Pearson’s coefficient was equal to 0.97, which indi-
cates a strong linear relationship. The plot of Fig. 7C indicates that the 
contact duty cycle range of 0.35 to 0.45 that we used in most of our 
experiments corresponded to a maximum force of 1.25 to 2.3 N.

Statistical analysis
MATLAB (version R2017b) statistical subroutines were used to 
analyze the data and perform all statistical tests. We compared time 
duration for each navigation mode (i.e., handheld, teleoperated, 
and autonomous) for the tasks of navigating from the apex to the 
aortic annulus, navigating around the valve annulus, and from the 
apex to the leak. We also compared occluder deployment times for 
each navigation mode. Groups, corresponding to different navigation 
modes, have unequal sample sizes and sample variances. We used 
Levene’s test to evaluate equality of variances. With no evidence of 

Screw and nut

Occluder

Delivery cannula
Deployment tube

Occluder wire

Fig. 6. Occluder deployment system. The occluder, attached to a wire via a screw connection, is preloaded inside a 
flexible polymer delivery cannula. The delivery cannula is inserted through the lumen of the catheter into the para-
valvular leak. A polymer deployment tube is used to push the occluder out of the delivery cannula. Once positioned, 
the occluder is released by unscrewing the wire.
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normally distributed time duration and more than two groups, we 
used the Kruskal-Wallis nonparametric test to check whether there 
are statistically significant time differences among groups. In experi-
ments with statistical significance, we compared pairs of groups using 
the Mann-Whitney U test with Bonferroni correction. Data less than 
Q1 − 1.5 × IQR or greater than Q3 + 1.5 × IQR, where the interquar-
tile range (IQR) = Q3 – Q1, were considered outliers. Fisher’s exact test 
was used to compare success rates between different groups in the case 
of paravalvular leak closure. Statistical significance was tested at the 
5% confidence level (P < 0.05).

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/29/eaaw1977/DC1
Movie S1. Operator-controlled catheter navigation inside a 3D printed heart model.
Movie S2. In vivo autonomous catheter navigation.
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A neuro-inspired artificial peripheral nervous system for
scalable electronic skins
Wang Wei Lee1,2, Yu Jun Tan1,2, Haicheng Yao1, Si Li1,2, Hian Hian See1, Matthew Hon3,
Kian Ann Ng4, Betty Xiong1, John S. Ho2,4,5, Benjamin C. K. Tee1,2,3,4,5*

The human sense of touch is essential for dexterous tool usage, spatial awareness, and social communication.
Equipping intelligent human-like androids and prosthetics with electronic skins—a large array of sensors spa-
tially distributed and capable of rapid somatosensory perception—will enable them to work collaboratively and
naturally with humans to manipulate objects in unstructured living environments. Previously reported tactile-
sensitive electronic skins largely transmit the tactile information from sensors serially, resulting in readout latency
bottlenecks and complex wiring as the number of sensors increases. Here, we introduce the Asynchronously Coded
Electronic Skin (ACES)—a neuromimetic architecture that enables simultaneous transmission of thermotactile
information while maintaining exceptionally low readout latencies, even with array sizes beyond 10,000 sensors.
We demonstrate prototype arrays of up to 240 artificial mechanoreceptors that transmitted events asynchronously
at a constant latency of 1 ms while maintaining an ultra-high temporal precision of <60 ns, thus resolving fine
spatiotemporal features necessary for rapid tactile perception. Our platform requires only a single electrical con-
ductor for signal propagation, realizing sensor arrays that are dynamically reconfigurable and robust to damage.
We anticipate that the ACES platform can be integrated with a wide range of skin-like sensors for artificial intel-
ligence (AI)–enhanced autonomous robots, neuroprosthetics, and neuromorphic computing hardware for dexter-
ous object manipulation and somatosensory perception.

INTRODUCTION
Electronic skins (e-skins) are essential for sensing human-machine-
environment interactions, with applications in advanced collaborative
anthropomorphic robots (1) and neuroprosthetics (2–4). To perform
the sensing, e-skins typically consist of numerous tactile sensor ele-
ments distributed over a large area substrate that is preferably soft (5),
conformable (6), stretchable (7–10), and lightweight (11). Similar to
biological skins, the ideal e-skin should be highly responsive and ca-
pable of resolving millisecond-precise tactile stimuli to facilitate rapid
discrimination (12, 13). This enables emerging dexterous robots the
ability to react quickly to highly localized and transient contact events,
such as a prick from a needle or slippage of an object. The sensors of
the ideal e-skin should also readily scale to thousands in number and
be distributed with variable spatial densities depending on the sensing
needs while having minimal wiring requirements (14). Furthermore,
an e-skin that remains functional while being subject to physical harm
enables continuous sensor feedback for safe robotic motor controls
and decision making. Although several pioneering efforts have been
made to achieve some of these desirable traits, there is currently no
technology that encompasses all of the stated attributes.

Onemajor reason is because a vast majority of tactile sensor arrays
are currently interfaced via time-divisional multiple access (TDMA),
where individual sensors are sampled sequentially and periodically to
reconstruct a two-dimensional (2D) map of pressure distribution. Al-
though the serial readout nature of TDMA allows conductor traces to
be shared across multiple sensors, which simplifies the wiring of large

arrays, it consequently leads to a decline in readout rates as the num-
ber of sensors in the array increases. Existing solutions to boost the
sampling rate of TDMA-based e-skins include use of high-speed
electronic components (15, 16), intelligent subsampling (17), and data
compression techniques (18). Unfortunately, such approaches present
challenges to scaling to the thousands of sensors needed to sensorize
large exterior areas of a robot and may necessitate impractically large
amounts of computation and power (16). Similarly, intelligent sampling
and data compression techniques often depend on having a priori
knowledge of the tactile stimuli, which limits broad applicability.

A promising alternative to TDMA is event-based signaling. Unlike
TDMA, event-based sensors are not periodically polled by a central
electronic controller. Instead, data are transmitted by individual sensors
only when necessary (19, 20), similar to biological mechanoreceptors.
By capitalizing on the temporal sparsity of tactile signals, event-based
representations of touch have been shown to use the available commu-
nication bandwidth more effectively in comparison with TDMA-based
solutions, thus yielding shorter readout latencies (16, 20, 21). Somevision
and auditory sensors have also applied such event-driven approaches
(22) using asynchronous protocols such as Address Event Representa-
tion (AER) (23). However, these systems requiremonolithic integrations
of numerous electrical traces on silicon substrates, which are challenging
to do for large-area, distributed skin-like sensing using flexible and
stretchable substrates. Hybrid event-based packet forwarding methods
are an interesting approach (16, 20), but such data packets require time
stamping and rearrangements at the receiver because they are transmitted
using communication protocols that do not guarantee fixed latencies.

Moreover, e-skins are expected to make frequent physical contact
with the environment. Thus, it is imperative for the e-skin system to
withstand mechanical damages, such as abrasion and cuts, with min-
imal loss of functionality or repair downtime. The typical n × m sen-
sor matrix (n, rows; m, columns) has limited mechanical robustness
because mechanical damage to the electrical trace would disable all the
transducers on the entire row/column. Recognizing this limitation,
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researchers have introduced alternate architectures with redundant
components and connections to improve damage resilience of e-skins
(24, 25). For instance, sensor nodes configured in a mesh network can
reconfigure their routing tables to avoid damaged connections (24).
However, individual nodes in such a network require sufficient com-
putational power to handle the overhead of data packet routing and
damage repair protocols, thus constraining the level of miniaturization
possible. Reconfiguration of larger networks will also incur substantial
downtime, potentially impairing sensing when it is needed the most
(e.g., during damage events).

In contrast, the human somatosensory system overcomes many of
these limitations by coupling action potential signal representations
with extensive arrays of nerve fibers in the peripheral nervous system.
The ultra-high density of nerve bundles allows mechanoreceptors to
use dedicated bioelectronic pathways to the somatosensory cortex (26).
In this manner, the latency of human somatosensory system is largely
invariant with the number of receptors in the body and limited only
by the propagation speed of action potentials or “spikes” (12). When
responding to tactile contact events, mechanoreceptors asynchronously
transduce ensembles of spikes that represent information through
spatiotemporal patterns (12, 13). Unlike TDMA, these spikes are
propagated in parallel to the somatosensory cortex (Fig. 1, right) with
submillisecond resolution (12). Tactile information is conveyed in a
myriad of ways, including spike frequency, spike latency, and phase
(27). Damage resilience is excellent because the connections are physi-
cally discrete and unaffected by the loss of a particularmechanoreceptor
or its axon, enabling continuous functionality of the rest of the system.

Inspired by the human nervous system and motivated by the
limitations of existing e-skin technology, we developed a new commu-
nication architecture for e-skins that can support thousands of spatial-
ly distributed sensors, each capable of asynchronous transmission that
requires only a single common conductor for signaling. We term this
platform Asynchronously Coded Electronic Skin (ACES). By using a
spread spectrum technique, ACES enables an artificial electronic ver-
sion of the peripheral nervous system for e-skins by multiplexing
signals from many sensors to a single receiver (Fig. 1, left).

In ourACESplatform, each sensor, referred to as anACES “receptor,”
captures and transmits stimuli information asynchronously as “events”
using electrical pulses spaced in time (Fig. 1A and fig. S1A). The temporal
arrangement of the pulses, which we refer to as an ACES pulse signature,
is unique to each receptor. The spread spectrum (28) nature of the pulse
signatures permits multiple sensors to transmit without specific time
synchronization, propagating the combined pulse signatures to the de-
coders via a single electrical conductor (Fig. 1B). The ACES platform is
inherently asynchronous due to its robustness to overlapping signatures
and does not require intermediate hubs used in existing approaches to
serialize or arbitrate the tactile events (19, 20). The ACES signature was
designed to be transmitted in 1 ms, similar in duration to a biological
action potential (12). At the receiving end, the decoder identifies the
transmitting receptor by correlating the received pulses against the
known temporal arrangement of pulses for each receptor’s signature.
An event from a particular receptor was deemed to be detected if the
number of matched pulses exceeded predefined thresholds (Fig. 1C).

RESULTS
Performance of ACES signaling scheme
To replicate the functional role of the biological nerve, the ACES sig-
naling scheme is capable of propagating pulse signatures (events) from

thousands of ACES receptors while preserving the relative time differ-
ences between the events. To demonstrate the concept, we developed a
prototype system using off-the-shelf components to characterize the
performance of ourACES communication architecture (Fig. 2A). Using
a physical network of 240 ACES receptors, we established that the tem-
poral resolution, defined as the minimum resolvable time difference be-
tween two pulse signatures, is <60 ns (Fig. 2B). The transmission latency
is also constant, dependent only on the duration of the pulse signature
and, importantly, not on the number of receptors. An exceptionally
high temporal precision is potentially achievable even for arrays with
>10,000 sensors (fig. S1B), despite an increase in temporal uncertainty
with an increasing number of overlapping pulse signatures (Fig. 2B),
determined using SimulationProgramwith IntegratedCircuit Emphasis
(SPICE) simulations (see Materials and Methods).

To establish the reliability of ACES signaling, we observed that by
using a decoder threshold of 6 for signatures with 10 pulses (W = 10),
a false positive probability of 2.3 × 10−5 and missed detection prob-
ability of 3.1 × 10−4 could be achieved even with 240 pulse signatures
overlapping temporally (Fig. 2C). UsingMonteCarlo simulation, which
realistically predicts the performance of our experimental prototype
(fig. S1C), we further show that false positive and missed detection
probabilities increased to 2.4 × 10−2 and 2.1 × 10−3, respectively, for
1000 overlapping pulse signatures (Fig. 2C). However, the likelihood
of signatures overlapping in the thousands was estimated to be rare be-
cause of the known sparse nature of tactile stimuli (13, 20). Moreover,
we could further improve decoding accuracy by an order of magnitude
when the duration of the voltage pulses was halved (Fig. 2D), character-
ized using the decoded signal-to-interference ratio (DSIR) metric (see
Materials and Methods). In addition, we observed that, although larger
values of pulse signature weight (W) improved DSIR for <100 over-
lapping signatures, the opposite was true if a high amount of signature
overlap was expected (Fig. 2E). Hence, a value ofW = 10 appears to be
optimal from our experiments.

A major concern of electronic communications in real-world
scenarios is the reliability of the system when exposed to electro-
magnetic interference (EMI). Hence, we evaluated the effects of two
common sources of EMI on ACES: (i) the 13.56-MHz band from
radio frequency identification (RFID) devices and (ii) the 2.4-GHz
band from Wi-Fi, Bluetooth, and microwave ovens. Using only basic
shielding, the effects of 13.56-MHz waves did not significantly impair
the signal quality of ACES (fig. S1D). Similarly, the EMI of 2.45-GHz
waves had little effect on signal quality (fig. S1E). This is also expected
given that 2.45-GHz frequency is beyond the bandwidth of the oper-
ational amplifier used. Thus, ACES can function reliably in real-world
scenarios without the need for extensive shielding.

Neuromimetic tactile representations using ACES
The ACES signaling scheme is uniquely suitable for encoding bio-
mimetic somatosensory representations (13) because it can propagate
the sparse stimuli events from numerous receptors with high temporal
precision. We designed a set of biomimetic models using our ACES
platform tomimic the fast-adapting (FA), slow-adapting (SA), and tem-
perature afferents by integrating flexible tactile and temperature sensors
that communicate through ACES pulse signatures (Fig. 3A). Similar to
their biological counterparts (13), ACES-FA receptors respond only to
dynamic skin deformations (fig. S2A, see Materials and Methods for
details) but are insensitive to static forces, whereas ACES-SA receptors
respond to static pressure by producing events at frequencies that in-
creases with greater force amplitudes (Fig. 3B and fig. S2B).
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The ACES-SA receptors enable accurate reconstruction of applied
forces by extracting the inter-event intervals (Fig. 3B). However,
ACES-SA receptors alone could not accurately reproduce transient
stimuli, such as a prick from a lancet lasting 1 ms, because the stim-
ulus duration was below the interval needed to encode the force in-
tensity. Instead, we reliably detected the applied impulse using the

ACES-FA receptors because they transmit events immediately due
to an increase (FA+) or decrease (FA−) in pressure. Our system allows
for ACES-FA receptors to also encode for a decrease in stimuli mag-
nitude, as opposed to biological FA receptors that do not discriminate
between increase or decrease in force (12). However, ACES-FA output
may not accurately track pressure intensities due to the dynamic nature
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The decoded events preserve the spatiotemporal structure (dashed lines) of receptor activation with ultra-high temporal precision, resembling the spike patterns that enable
rapid discrimination in the somatosensory system.
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of the threshold used (Fig. 3B and fig. S2A). Combining both FA and SA
behaviors, e-skins based on ACES have the versatility to react to a wide
temporal range of tactile stimuli.

To demonstrate a multimodal sensing e-skin using ACES, we
developed an e-skin integrated with flexible pressure- and temperature-
sensitive transducers (Fig. 3C and fig. S2C). We used pressure trans-
ducers that have heterogeneous transduction profiles by altering the
Young’s modulus of microstructured elastomers (29). This increased

thedynamic rangeof pressure trans-
duction (fig. S2, D to F).We also de-
signed resistive temperature sensors
that are most sensitive between 20°
and 50°C (fig. S2,G andH),which is
similar to the cold receptor affer-
ents in human skin (30). Akin to
biological cold receptors, our ACES
thermoreceptor transmitted events
at a reduced frequency as the sur-
rounding temperature rose above
25°C (fig. S2I).

Combining both transducers on
a single sheet of flexible substrate,
we show that our ACES platform
could perform simultaneous multi-
modal sensing. We demonstrate
that, when an ACES-equipped pros-
thetic hand grasped a hot cup of
coffee, simultaneous detection of
thermotactile sensations could be
achieved (Fig. 3, C to F).

Slip detection via
spatiotemporal ACES events
The ability to preserve the spatio-
temporal profile of tactile stimuli
allows rapid detection of object
slippage, which is essential for
grasp stability during in-hand ob-
ject manipulation (31). Inspired
by the simplicity and computation-
al efficiency of optical flow algo-
rithms in event-based vision sensors
(32), we implemented a spiking con-
volutional network that computes
the magnitude and direction of
slippage in an event-drivenmanner
(Fig. 4A). As an object is pulled out
of grasp, ACES-FA receptors are
triggered in particular spatiotem-
poral sequences that could indicate
the onset of slippage. By comparing
each receivedeventwithother events
correlated in space and time (seeMa-
terials and Methods), our network
obtained movement estimates im-
mediately upon slip onset and ac-
curately identified the downward
movement of the object (Fig. 4B).
The system was also capable of de-

tecting the slippage of a needle with minimal latency (Fig. 4C). Despite
the fair accuracy of the speeds derived compared with a high-speed
camera, the spike timing patterns can indicate and enable control
systems to react with low latencies (<10 ms).

Speed and force invariant classification of texture
Humans typically recognize surface textures by sliding their fingers
over them laterally. Studies suggest that the humans can discriminate
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textures independent of sliding speed (33)—a feat that is difficult to
replicate in robotic tactile sensing because controlled tangential speeds
are needed to derive stable frequency-based descriptors (21, 34, 35).

We propose that our motion estimation technique (Fig. 4A) can
be applied to improve texture recognition when sliding speeds are
inconsistent.
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We constructed a dataset by sliding an array of ACES-FA recep-
tors over gratings of various spatial density by hand, thus ensuring
that the sliding speed and normal forces varied within and between
trials (Fig. 5, A and B). This substantially increased the problem
complexity, because the variability in tangential speed meant that
a larger grating pitch did not always trigger receptors less frequent-
ly (Fig. 5B). Next, we extracted frequency component information
by compiling the distribution of ACES-FA event time intervals into
a feature vector for classification by a neural network (see Materials
and Methods). Our event-based motion estimation technique was
also used to approximate the tangential speed of the recording. We
observed that discriminating between the grating sizes was about
14% more accurate when the estimated tangential speed was included
as a feature (Fig. 5C). The improvement agrees with our expectation,
because the approximated sliding speed tracked the actual speed fairly
well. In addition, we observed a decrease in recognition performance
from 88 to 50% when temporal resolution of the events decreased
from 1 to 40 ms, indicating the importance of having tactile sensors
with high temporal fidelity. The sparsity of the ACES-FA representa-
tion allowed for exceptional timing precision while consuming only a
fraction of the data rates produced by a comparable frame-based im-

plementation (Fig. 5D). Moreover, frequency domain information was
derived directly from the inter-event time intervals, unlike frame-
based systems where complex operations such as Fourier transforma-
tions are typically required (36).

Rapid perception of local curvature and object hardness
Dexterous manipulation tasks often necessitate the ability to swiftly
perceive object local curvature and hardness from mechanosensory
stimuli. In humans, manipulation tasks are typically executed as ac-
tion phases delimited by mechanical contact events (13). Meissner
corpuscles, with their FA responses of submillisecond precision, play
a crucial role in rapid and reliable contact classification to ensure
seamless transitions between action phases. Using an array of 69
ACES-FA receptors (Fig. 6A) coupledwith a spike-based classification
technique (see Materials and Methods), we demonstrated the ability
to classify various local curvatures up to 10 times faster (<7ms for 97%
accuracy) than a 100–frame per second (fps) conventional sensor
array (Fig. 6, B andC). Amarked improvement in classification speed
was also observed when the ACES-FA receptor output was used to
distinguish geometrically identical shapes of different hardness
(Fig. 6, D to F). Our results highlight the importance and effectiveness
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of temporal features in rapid tactile discrimination, which concur
with earlier studies in both biological and artificial somatosensory
systems (12, 37).

ACES enables flexible arrangements of sensor array
Wiring simplicity in e-skins is critical, especially when routing wires
along nonuniform surfaces or curvatures. Our ACES pulse–based
communication approach markedly simplifies the problem because
it allows signals from all receptors to be transmitted through a single,
common electrical conductor. Here, we demonstrate nine ACES-FA

receptors that could be dynamically rearranged to form multiple
spatial formations as long as contact with a sheet of conductive fab-
ric was maintained (Fig. 7). Thus, our ACES platform enables high-
ly irregular sensor arrangements that accommodate nonuniform
geometries.

Robustness of ACES networks to physical damage
E-skins are vulnerable to wear and tear because they constantly rely
on physical contact to sense the environment. Our ACES platform
enables sensor arrays to have high signaling redundancy when
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interfaced to a common electrical conductor, which translates to ex-
ceptional robustness against physical damage.We exemplify this level
of resilience by showing that an array of 16 ACES-SA receptors re-
tained full functionality even when the substrate was cut at multiple
sites (Fig. 8, A and B, and movie S1). In comparison, a conventional
row-column multiplexed tactile sensor array experiencing similarly
large damage could not sense at most locations (Fig. 8, C and D,
and movie S2). Unlike network-based approaches (24), ACES net-
works do not require reconfiguration when damaged and hence expe-
rience zero down time (movie S1).

DISCUSSION
ACES is designed to be a communication technique analogous to
nerve bundles in biological skin. Toward this goal, our ACES elec-
tronic peripheral nervous system architecture presents several advances
in e-skin technology. First, ACES uses a novel spread-spectrum tech-
nique to asynchronously multiplex signals from a large number of
transducers while achieving near-constant latency despite increasing
the number of transducers. Therefore, larger, full-body e-skins with
thousands of spatially distributed sensors can be realized without com-
promising system responsiveness to stimuli.

Second, being event based, our ACES platform enables tactile
signals to be captured with ultra-high temporal fidelity, because the
sampling time is not constrained to a central “clock.” This enables pre-
cise time recording of tactile events that enable rapid slip detection
and shape and material hardness classifications and also provides
movement estimates that enhance speed-invariant texture discrimina-
tion. Third, ACES allows signals from all receptors to propagate via a
single shared conductor, empowering roboticists and sensor system
designers with outstanding levels of flexibility when spatially arranging
sensors on the e-skin. Furthermore, the high redundancy of physical

connections when a planar conductor is used ensures damage robust-
ness of ACES sensor arrays—the system is shown to operate un-
interrupted even when multiple mechanical cuts were being made
to the substrate.

Having tactile signals that are millisecond precise may appear
excessive and unnecessary, especially if the time frames for physical
motion of the intended robot are not particularly fast. However, re-
cent works in both biological and artificial tactile sensing have shown
that significantly more information is present in the temporal do-
main of tactile signals than the rate of movement suggests (12, 13).
For instance, vibratory signal above 100 Hz are often used to char-
acterize slip events (15), whereas the high-frequency signal compo-
nents generated when sliding tactile sensors over surfaces typically
describe texture (21, 38). In the human skin, there are specialized
mechanoreceptors that respond to transient stimuli from 50 to
500 Hz (13). Therefore, harnessing tactile signals with millisecond
precision will enhance texture recognition and dexterous manipula-
tion capabilities while ensuring safety in human-robot interactions.
Moreover, the event-based nature of ACES allows e-skins to achieve
impressive temporal resolutions at a fraction of the data rates needed
by existing systems.

ACESappears tohave similaritieswithAER,which is an asynchronous
protocol used in neuromorphic devices (23). However, ACES and AER
are fundamentally dissimilar and serve different niches. First, AER is a
point-to-point protocol, simulating a network of interconnected neu-
rons. Events from a neuron are routed to another particular neuron
by matching the address with a routing table. It is thus possible to have
bidirectional communication in AER. Conversely, ACES is a many-to-
one protocol, where there is only one receiver in the network. Therefore,
information can only flow from the sensors to the receiver. ACES is thus
more suitable for sensing applications, whereas AER may be used in
both sensing and computational networks.
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Second, AER is time multiplexed, and arbitration is necessary to
ensure proper sharing of the address bus. Most implementations
use flow control to ensure that the receiver is ready to receive the next
event. AER thus have very low transmission error rates but require
additional logic for arbitration and handshaking. Most systems today
use field programmable gate arrays (FPGAs) for AER interfaces, which
leads to larger and more complex devices. In contrast, ACES can “fire-
and-forget” with no need for any arbitration or flow control. However,
ACES is not error free, and one potential disadvantage is that it is im-
possible for the transmitter or receiver to knowwhether a loss of sensing
event has occurred. Nevertheless, the simplicity of ACES enables sim-
ple transmitter implementations and exceptional timing precision of
stimuli events. Tiny sensor nodes embedded in elastic substrates can
be used to implement theACES platform at relatively high density and
sensing speed, which are especially important for e-skin applications
where real-time motions and mechanical compliance are critical.

Third, most implementations of AER require numerous wires to
realize, from four wires per sensor in serial AER (39) and up to 32 wires
in parallel AER (40). Although this enables AER systems to have supe-
rior throughput (typically millions of events/s) compared with ACES
(hundreds of thousand events/s), it requires high-density interconnects
fabricated in silicon. For e-skins, replicating such patterns over large
areas on flexible and stretchable substrates remains impractical. There-
fore, in e-skin applications, our ACES’s single-shared conductor ap-
proach is highly desirable.

Last, our ACES platform can complement AER, rather than being
mutually exclusive. For example, we can describe ACES as the nerve
bundles from mechanoreceptors (sensors) to the spinal cord (commu-
nications bus), where events received can then be transported via AER
from the spinal cord to the brain (central microprocessor) of the robot.
Such a hierarchy permits compliant and damage robust e-skin patches
to be wrapped over the exterior of the device, complemented by high-

throughput AER networks at the robot interior where the use of rigid
components are more palatable.

The use of one microcontroller per receptor in current prototypes
is currently more complex when compared with n × m type cross-bar
sensor arrays, inevitably imposing upper limits to the network in
terms of spatial density and power savings. However, similar limita-
tions apply to any sensor array that uses local computation and com-
munication. For instance, Roboskin (41) on the iCub has 12 elements
per 390-mm2 triangular tile (32.5 mm2 per receptor), whereas Hex-o-
skin (42) has 3 elements per 665-mm2 module (221 mm2 per recep-
tor). With a density of 9 mm2 per receptor (fig. S3A), ACES compares
favorably with the aforementioned systems in terms of achievable spa-
tial density.

Our prototype consumes about 7 mW per receptor at 3.3 V (see
Materials and Methods). Similar e-skin architectures consume from
0.2 to 55 mW per sensor (41–43). It is important to note that our
reported power consumption should be seen as an upper bound, be-
cause these microcontroller-based prototypes were meant to be an early
demonstration of ACES using off-the-shelf components. We anticipate
smaller-sized receptors with much lower power consumption to be
achievable through the use of application-specific integrated circuitry
(ASIC). ASICs each representing several ACES receptors per chip are
another viable option for regions of e-skin where extremely high den-
sities of receptors are desirable.

A key benefit of ACES-enabled e-skins is the unique combination
of high mechanical robustness and wiring simplicity. The damage ro-
bustness of an ACES network stems from the physical redundancy of
connections from each receptor to the receiver. When a planar con-
ductor, such as a conductive fabric or stretchable electrodes, is used to
link the receptors to the receiver, each receptor has multiple direct
connections to the receiver. The ACES sensor network thus retains
full functionality as long as there exists at least a physical connection
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between each receptor to the receiver. Damage to the conductive
substrate can be interpreted as merely a change in the shape of the
substrate and will not affect the system functionality (movie S1).

The fire-and-forget nature of ACES pulse signatures also ensures
that individual receptors are plug and play. Multiple patches of ACES
e-skins are easily combined by connecting the substrates together.
Similarly, gross damage that disconnects several receptors from the
system will not affect the functionality of the remaining intact con-

nected network. Although the receiver may not immediately realize
the loss of the disconnected receptors, additional protocols built on
top of ACES can be implemented to identify missing receptors. For
instance, disconnected SA receptors may be detected if no signatures
from these receptors are received after a specified timeout period. The
most severe damage that could occur would be the shorting of the
signal carrier to the supply voltage or ground traces, which would
render the entire network inoperable. This affects any other wired
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element is represented by a variable resistor. Dashed lines indicate traces affected by the damage.
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communication systems, and the vulnerability could be minimized
through proper design of the system encapsulation.

The assembly of thousands of microcontrollers in a network may
appear to be complex in comparison with n ×mmatrix–type sensor
arrays. Although this is true for rectangular and uniformly distributed
sensor arrays, the complexity of fabricating matrix-type arrays rapidly
increases if stretchable e-skinswith nonuniformdensities are desired. In
contrast, the bulk of the manufacturing complexity for ACES-based
networks is the assembly of common electronic components, for which
established volume manufacturing processes are available. Hence, in
terms of manufacturing complexity, ACES-based networks can be im-
plemented more conveniently for e-skins with nonuniform shapes and
densities.

The mechanoreceptor models implemented in this paper are rel-
atively simplistic when compared with the more sophisticated bio-
logical models reported (44). However, our goal is not to reproduce
biologically accurate tactile responses but to capitalize on ACES’s high
temporal resolution for efficient information transfer. ACES events,
similar to biological action potentials, are slow to propagate individu-
ally (1 ms), but these events can be propagated in parallel. If each event
were to represent a single bit of a digitally encoded resistance value, it
would require eight events (assuming 8-bit resolution) to be trans-
mitted consecutively, resulting in an 8-ms latency. Theoretically, this
latency can be reduced to 2.015 ms using ACES-SA encoding, where
two events spaced 15.36 ms (60 ns × 256) apart effectively encode the
same 8-bit resistance value. Moreover, current research efforts suggest
that classification tasks can be rapidly performed even without knowl-
edge of actual pressure values by relying on relative time differences of
events from a population of receptors (12, 13, 37). ACES-FA encoding
is designed to meet these requirements. Nevertheless, the programmable
nature of individual ACES receptors ensures that receptor models with
increased efficiency and/or biologically relevant mechanoreceptor out-
put can be simulated in the future.

By using our ACES architecture, one potential disadvantage is the
increase in computational complexity required in the receiver/decoder.
Similar to the human brain, concentrating power-hungry operations at
the receivermakes practical sense, because this design allows the sensors
(transmitters) to be realized with low-cost and low-power hardware.

In summary, our neuro-inspired ACES platform enables highly
scalable and ultra-fast somatosensory perception, with damage ro-
bustness and sensor placement flexibility that rival wireless solutions.
We anticipate that our ACES architecture will help advance human-
machine-environment interactions for autonomous anthropomorphic
robots (2), naturalistic embodiment of neuroprostheses (2, 4, 45), high-
performance brain-machine interfaces (46, 47), and soft machines (48).

MATERIALS AND METHODS
Objectives and study design
Our objectives were to show that (i) the ACES architecture have the
capacity to multiplex asynchronously transmitted events from nu-
merous sensors and reconstruct the output at the receiver and (ii) the
high temporal resolution of tactile events afforded by our technique can
be uniquely applied to solve various challenges in e-skin applications.

Design of ACES pulse signatures
We designed a set of electrical voltage pulse codes that can be
asynchronously added with a low probability of false decoding.
Each pulse signature consists of W voltage pulses spaced apart at

specific time instances t = {t1, t2,… tw–1}. At the receiving end, pulses
are received at time instances t′ = {t1′, t2′ … tv′}. The decoder finds
the intersection T = (t ∩ t′) where the cardinality |T| denotes the cor-
relation strength. If |T| exceeds a predefined decoder threshold, then
an event is deemed to have been received (Fig. 1C).

An ideal set of pulse signatures is one that has minimal auto-
correlation and cross-correlation. There should also be enough unique
signatures in the set to identify all receptors in the array. A family of
pulse signatures may be characterized by three parameters: F, the
maximum number of voltage pulses that fit within the duration of
a signature;W, the weight or the number of pulses per signature; and
L, the maximum allowable interference (autocorrelation and cross-
correlation) between two signatures.

For a pulse signature with a duration of Ts = 1 ms with voltage
pulses lasting Tp = 100 ns each, the maximum number of voltage
pulses that fit within the duration of a signature is calculated as follows

F ¼ Ts
Tp

¼ 10;000

ParametersW and L are closely related to the error performance of
the decoder. Under ideal conditions, all W voltage pulses from the
target signature should match the template; thus W is the maximum
signal strength. L is the maximum interference (cross-correlation)
allowed between signatures of the same family. If N nontarget signa-
tures overlap, the amount of interference could be as high as N × L.
Error performance will thus degrade if N × L is much larger than W.

There needs to be as many unique pulse signatures as there are
ACES receptors. To accommodate for the thousands of ACES re-
ceptors, the pulse signatures used in this paper have L = 2 such that
the number of signatures (C) will follow the inequality (49)

C ≤
ðF � 1ÞðF � 2Þ

WðW � 1ÞðW � 2Þ

Therefore, with F = 10,000 and W = 10, the array could accom-
modate up to 138,847 receptors, which should be sufficient for whole-
body robot sensor skins (50). Several techniques for finding these
codes have been documented (51).

The voltage pulses in a pulse signature can either be positive or neg-
ative, which allows each signature to take on several variants. For in-
stance, ACES-FA receptors use two variants of the same signature to
indicate an increase or decrease in pressure.

Implementation of an ACES receptor array
Each receptor consists of a resistive sensor, a microcontroller, and sev-
eral passive components to perform signal conditioning (Fig. 2A). A
potential divider circuit converts sensor resistance to voltage values.
The voltage is then sampled at 10 KHz with 10-bit resolution by the
analog-to-digital converter (ADC) on the ATtiny20 microcontroller
(Microchip Technology, United States). The values are sent to firmware
models to mimic the fast (FA) or slow (SA) adaptation behavior of
receptors found in the human skin.

The ACES-FA model generates an event whenever a measured
voltage has changed more than 50 mV since the last transmitted event.
A positive/negative pulse signature is transmitted for a pressure in-
crease/decrease event, respectively. After transmitting the event, a new
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voltage baseline is set (fig. S2A). Tomimic SAmechanoreceptors, the
model generates events at intervals proportional to the 8-point aver-
aged ADC value. For Fig. 3, each bit corresponds to a 100-ms interval.
Together with a 1-ms pulse signature duration, a maximum ADC
value of 1023 will correspond to a 103.3-ms interval between events.
Receptors with the SA-mimicking model only transmit positive ver-
sions of the pulse signature.

The pulse signature is generated by toggling a digital pin at specific
time intervals. A capacitive high-pass filter is used, ensuring that only
the high-frequency components of the signal are transmitted, in the
form of voltage pulses (fig. S1A). An inverted summing circuit, con-
structed using an OPA354 operational amplifier (Texas Instruments,
United States) is used to combine pulses from the multiple receptors.
The resultant signal is digitized with 8-bit resolution at 125 MHz using
an oscilloscope (PicoScope 3406D). Decoding is performed offline
(MATLAB). Voltage thresholds V+ and V− (fig. S1A) are heuristically
defined in software to be 40% of the amplitude of a single pulse, above
and below 0 V, respectively. We found this to reliably distinguish a
pulse from background noise.

For the purpose of controlled experimentation, we developed a
modular prototype system consisting of a board with 80 ACES re-
ceptors. The transducer arrays, namely, a flexible 80-element transducer
for slip detection and grating classification (Fig. 3C and fig. S3B) and a
rigid 69-element transducer for local curvature and hardness classifi-
cation (Fig. 6A and fig. S3C), are separate entities that can be attached
to the board for data collection. An additional prototype of 25 recep-
tors connected by serpentine interconnects (fig. S3A) was also devel-
oped for the purposes of movie S1.

Effects of EMI on signal
We induced EMI of 13.56MHz using a commercial RFID card reader
(RF430FRL15xH by Texas Instruments). We evaluated the condition
when the antenna was placed 1 cm above the summing amplifier
and when the antenna was placed 1 cm above a 15 cm by 15 cm con-
ductive fabric used for propagating the ACES signatures. We also
evaluated the situation when a grounded aluminum foil sheet was
placed between the antenna and the system for the aforementioned
antenna placements. The signal-to-noise ratio, computed as the ratio
of peak-to-peak voltage of the pulse signature to the peak-to-peak
voltage of background noise, was measured for all four scenarios.
The 2.4-GHz interferencewas projected fromaTG.30 antenna (Taoglas
Antenna Solutions) driven by a SMB100A signal generator (Rohde &
Schwarz). The antenna was placed 20 cm above the ACES systemwith-
out shielding.

Determining DSIR and verification of timing precision
The physical hardware test setup consisted of an array of 240 receptors,
each programmedwith a unique pulse signature. Each trial began with
an external digital edge signal that was broadcasted to all receptors,
triggering a request for transmission. Upon receiving the trigger, each
receptor transmits its pulse signature after a random delay of less than
1 ms, thus ensuring that all the 240 transmitted signatures will over-
lap at varying temporal offsets between trials. For trials involving less
than 240 receptors, the excluded receptors were programmed to ignore
the trigger.

Receptors (16 of 240) have recording probes attached to their trans-
mission pins. Signals from these probes served as the ground truth on
the actual time of the pulses transmitted. The digital signals from these
16 probes, as well as the combined pulse signatures from the 240 recep-

tors, were digitized at 125MHz simultaneously by a mixed signal oscil-
loscope (PicoScope 3406D), thus ensuring that all channels were
synchronized in time.

We defined the DSIR metric to characterize the ease of an event
detection in the presence of interference. The interference value is
taken to be the root mean square value of the decoder correlation |T|
during the 1-ms transmission window of the corresponding receptor.
The last 100 ns of the decoder output was excluded because it corre-
sponded to the detection of the correct pulse signature and should not
be considered as interference. DSIR was then computed as the ratio
between the signature weightW and the interference value. The DSIR
was computed for the decoders responsible for the 16 probed recep-
tors. For each network size, 1000 trials were conducted, and the re-
ported DSIR was averaged from the 16 decoder outputs across all
1000 trials.

Timing precision was obtained as the difference in time between
the start of last pulse transmission, as obtained from the attached probe,
and the transmission time, as determined from the decoder output.
The measured time difference is thus independent of the mechanical
inertia of the transducer and processing time of the receptor model.
The reported timing precision in Fig. 2A was obtained as an average
across all the 1000 trials for each network size.

Monte Carlo simulations
Monte Carlo simulation was used to obtain estimates of DSIR for
network sizes above 240 receptors. For each trial involving a simu-
lated array ofN receptors, we additively combinedN pulse signatures
at random offsets of <1 ms. The resultant signal was then decoded
using the same software decoder as the physical experiments. One
thousand Monte Carlo trials were performed for each network size.

SPICE simulations
The temporal precision of an ACES receptor array was limited mainly
by the duration of a single voltage pulse. As more receptors are added
to the array, the capacitance of the electrical conductor in which the
pulses propagate also increases. The increased capacitance results in
reduced phasemargin of the op-amp feedback loop and causes ringing
in the output (fig. S4A). The ringing can be reduced by increasing the
feedback capacitance (CF in fig. S4B) to improve stability. However,
pulse width also increases as a consequence. Hence, a SPICE simula-
tion (Cadence Spectre) was used to determine how the pulse width
changes with increasing number of receptors. The simulated circuit
is shown in fig. S4B. The input from each receptor was modeled as
a voltage source with a square wave. The edges of the waveform were
high-pass–filtered to obtain the waveform of the voltage pulse. A tran-
sient simulationwas run forN= 200 to 16,000. For eachN, the value of
CF was swept to find theminimumCF that has acceptably low levels of
ringing (i.e., the overshoot does not exceed quantization threshold set
at 40% of pulse amplitude). Last, the resultant pulse widthwas taken as
the length of time in which the voltage remained above quantization
threshold. The temporal precision of the system was interpreted as
0.5× pulse width.

ACES receptor response to pressure and prick
The analog output channel of a load cell (Mark-10) was connected to
the ADC pin of an ACES-FA receptor and an ACES-SA receptor, as
well as a recording channel on an oscilloscope, to serve as ground truth
(PicoScope). The summed signal from both receptors was simulta-
neously recorded using a separate channel on the same oscilloscope.
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Two mechanical stimuli were presented, the first being a finger press,
and the second being a prick by a lancet using a lancing device. The load
cell reading in Fig. 3B was smoothed using a moving average filter of
eight points (OriginLab 2017). Reconstruction traces were computed
offline using MATLAB.

Slip detection
An object (an acrylic disk with a diameter of 1 cm in Fig. 4B and a
needle with a diameter of 0.8 mm in Fig. 4C) was held vertically
between two flat surfaces of a bench vise. A pressure-sensing array
with 80 sensors (fig. S3B), interfaced with an array of ACES-FA recep-
tors, was pasted on one of the surfaces between the vice and the object. A
thread connected the object to a load cell (Mark-10 5i). A separate piece
of thread, connected to the opposite side of the load cell, was pulled to
make the object slip out of the vice. The combined signal output from
the 80 ACES receptors was sampled together with the analog output of
the load cell at 125 MHz using an oscilloscope (PicoScope 3406D).
Computation of slip detection was processed offline in MATLAB.

The computation of local movement estimates (Fig. 4A) was
generally as follows:

1) For an event from a particular receptor A that occurred at t0, look
for prior events from receptors within distance D of receptor A that
occurred at tprior where t0 − Dt < tprior < t0.

2) For each prior event, compute movement magnitude

Magnitude ¼ D
t0 � tprior

3) Movement direction for each prior event

Direction ¼ a tan 2ðdy; dxÞ

where dx and dy are the x and y components of the distance D.
4) By averaging the magnitude and direction for each prior event,

the local movement estimate at receptor A’s location was obtained.
The global movement estimate was obtained as the moving aver-

age (exponential kernel of 5-ms time constant) for all the local move-
ment estimates. For Fig. 4 (B and C), the time interval (Dt) was 5 ms
and the distance (D) was 2 mm. Ground-truth information was ob-
tained using an optical camera recording at 240 fps to track a marked
spot on the thread during the experiment.

Grating classification
Rectangular holes of 40 × X mm were laser-cut from 5-mm-thick
acrylic sheets, where X denotes the pitch of the grating. A pattern con-
sists of multiple holes were spaced X mm apart. Five grating pitches
were used (X = 2 to 6 mm in 1-mm increments). Each pattern was at
least 25 cm in length. An 80-element transducer array (fig. S3B) was
mounted on a 5-mm-thick piece of polyurethane rubber for compli-
ance (Ecoflex 00-30, Smooth-On). To achieve realistic stimulus
conditions, we moved the array over the gratings by hand at varying
tangential speeds and normal forces. Fifty trials were collected per pat-
tern, each lasting at least 1 s. To extract frequency domain informa-
tion, we compiled inter-event time intervals for eachACES-FA receptor
into a histogram of 100 bins (1 to 100 ms in 1-ms bins). The histo-
gramswere computed frommoving timewindows of 100-ms duration
in steps of 10ms each. Thus, a 1-s trial generates 91 histograms. Speed

estimates were computed using the same technique as the slip detec-
tion with Dt = 20 ms and D = 2 mm and averaged within each time
window. A secondary speed estimate was computed by multiplying
the event frequency corresponding to the highest bin count with the
grating pitch used. This second estimate serves as the ground truth
(blue dashed lines in Fig. 5, A and B).

We classified individual histograms for grating pitch using a multi-
layer perceptronwith 40 hidden neurons and 5 output neurons (nntool,
MATLAB). Input to the network was a 100 × 1 vector of bin counts
from the inter-event time histogram (magenta box in Fig. 5A). For
the case with speed estimates, a 101 × 1 vector was used, where the first
100 elements were the bin counts and the last element was the estimated
speed. In all cases, the scaled conjugate gradient backpropagation
(trainscg) algorithm was used for training. One randomly selected trial
per grating was excluded for each training instance and used for test.
Results reported in Fig. 5C were compiled from 20 training instances.
To simulate reduced temporal resolution, we binned time stamps of
the events at discrete values that are multiples of the reported tem-
poral resolution.

To compare data rates (Fig. 5D), we assumed a single frame to con-
sume 12 bytes (80 bits for 80 receptors + 1 byte escape character + 1 byte
delimiter). An event was assumed to be 1 byte long (7 bits address, 1 bit
data). Statistics for the event-based representation were obtained by
counting the number of received events in all the 100-ms time windows
acquired.

Local curvature and hardness classification
The shapes used for indentation are (i) a spherical dome of 10-mm
radius, (ii) a broad right circular cone of 7.5-mm height and 10-mm
base radius, and (iii) a sharp right circular cone of 7.5-mm height
and 2.5-mm base radius. Each shape is 3D printed twice, once using
a rigid RGD810 VeroClear material and a duplicate using the softer
FLX980 TangoBlackPlus material (fig. S5A). A 3D printer (Objet260
Connex) was used to produce the shapes. (See PolyJet Materials Data
Sheet for the material properties.)

The indentations were performed using a mechanized z-axis stage
(Newmark) with force feedback from the force gauge (Mark-10 5i) at a
speed of 50 mm/s. The depth of indentation of the softer shapes were
fixed at 2800 mm, whereas the hard shapes were indented to depths
that produced the same forces as their softer counterparts (~9 N for
the sphere, ~2 N for the broad cone, and ~0.3 N for the sharp cone).
The shapes were indented onto the center of a circular array of 69 sen-
sors interfaced with an array of ACES-FA receptors covered with a
1-mm-thick elastomer sheet (fig. S5B). Each shape was indented
10 times, with a 5-s interval between indentations to allow the de-
formable material to recover. Data from the force gauge and the
ACES receptor array were recorded simultaneously at 125 MHz
using an oscilloscope (PicoScope). All the trials were repeated with
the sensors interfaced with ACES-SA receptors to obtain the pres-
sure distribution.

The ACES-SA receptors were programmed to have an inter-event
interval of 10 ms per ADC bit. Therefore, each receptor will generate
events at a rate of about 100 Hz and will thus be sufficient to model a
conventional 100-fps pressure sensor array.

The output from ACES-FA receptors were classified on the basis
of the Van Rossum spike distance measure (52), commonly used to
quantify the similarity between spatiotemporal spike patterns. Events
from each receptor are convolved with a double exponential kernel
of 5-ms decay, thus yielding a continuous trace. Traces from the same
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receptor can then be compared between trials using the Euclidean
distance. The distance between any two trials was then calculated as
the sum of the differences between individual traces. Last, a K-nearest
neighbor algorithm (53) (with K = 5) was used to classify the trials
based on the summed distances.

To classify the output from ACES-SA receptors, we first recon-
structed traces of pressure intensity over time for each receptor based
on the time interval between events. The traces were then decimated
at 10-, 20-, and 40-ms intervals to mimic 100-, 50-, and 25-fps sensors,
respectively. Similar to ACES-FA receptors, the Euclidean distance
was used to compare the pressure traces from the same receptor be-
tween trials, and the sum of differences between individual traces de-
fines the distance between any two trials. The K-nearest neighbor
algorithm (K = 5) was then used to classify the trials based on their
distances.

Free-form receptor arrangements
To demonstrate the flexible arrangement of ACES receptors on a single
electrical conductor, we developed ACES receptors with their own bat-
tery power source. The receptors and the decoding circuit were con-
nected only by a stretchable conductor (knit jersey conductive fabric,
Adafruit). Pressure was applied by pressing a conductive rod onto the
receptors. The conductive rod provides a charge return path, such that
charges from the environment can flow back to the receptors by cou-
pling with the human operating the prototype. The same effect could
have been achieved through the use of a grounded conductive encap-
sulant. However, this approach was omitted to achieve better clarity of
the demonstration.

Robustness against severe damage
Battery-powered ACES receptors, connected together with a stretch-
able conductive fabric (knit jersey conductive fabric, Adafruit), were en-
capsulated in stretchable silicone rubber (Ecoflex 00-30, Smooth-On).
A stretchable coat of silver ink (PE873, DuPont) and encapsulant
(PE73, DuPont) was applied over the rubber via screen printing and
grounded to provide the charge return path.

To construct the conventional cross-bar multiplexed sensor array
used in the comparison, we fabricated two flexible printed circuit
boards (PCBs) to form the row and column traces. A piezoresistive
layer (Velostat, 3M) was sandwiched between the PCBs. Each inter-
section between a row and a column formed a pressure-sensitive
element. Traces from the PCBs were connected to an ATmega328
microcontroller (Atmel). Software running on the microcontroller
polled each sensor element sequentially to obtain the pressure dis-
tribution of the array. Figure 8D illustrates the circuitry used. Because of
the simplicity of the readout circuit, some cross-talk will be expected
(54). Nevertheless, because the array is relatively small, the cross-talk
did not affect the results significantly.

A ring-shaped acrylic object was pressed onto the sensor arrays to
deliver the stimulus. We cut the sensor arrays using a pair of scissors
to cause damage.

Power consumption measurements
Using a source measurement unit (Keithley 2450), we measured the
power consumption of a prototype board of 80ACES receptors at 3.3-V
operating voltage. The receptors were programmed with ACES-SA be-
havior, and results were an average from a 10-s observation.We did not
observe significant differences in power consumption when ACES-FA
behavior was implemented.

Fabrication of transducers
Details of material fabrication and characterization are available in
texts S1 and S2. Figure S2F was obtained using an automated mi-
croindenter (FemtoTools).

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/32/eaax2198/DC1
Text S1. Pressure sensor fabrication and characterization
Text S2. Temperature sensor fabrication and characterization
Fig. S1. Additional characterization of ACES signaling.
Fig. S2. Characterization of transducers.
Fig. S3. Example prototypes of ACES sensor arrays.
Fig. S4. SPICE circuit used for simulation.
Fig. S5. Setup for local curvature and hardness classification.
Movie S1. A typical 5 × 5 cross-bar sensor array subjected to physical damage.
Movie S2. Robustness of an ACES sensor array to physical damage.
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Biomimetic sensory feedback through peripheral nerve
stimulation improves dexterous use of a bionic hand
J. A. George1*†, D. T. Kluger1†, T. S. Davis2, S. M. Wendelken1, E. V. Okorokova3, Q. He3,
C. C. Duncan4, D. T. Hutchinson5, Z. C. Thumser6, D. T. Beckler6, P. D. Marasco6,
S. J. Bensmaia3, G. A. Clark1*

We describe use of a bidirectional neuromyoelectric prosthetic hand that conveys biomimetic sensory feedback.
Electromyographic recordings from residual armmuscles were decoded to provide independent and proportional
control of a six-DOFprosthetic handandwrist—theDEKA LUKEarm. Activation of contact sensors on theprosthesis
resulted in intraneural microstimulation of residual sensory nerve fibers through chronically implanted Utah
Slanted Electrode Arrays, thereby evoking tactile percepts on the phantom hand. With sensory feedback enabled,
the participant exhibited greater precision in grip force and was better able to handle fragile objects. With active
exploration, the participant was also able to distinguish between small and large objects and between soft and
hard ones. When the sensory feedback was biomimetic—designed to mimic natural sensory signals—the partic-
ipant was able to identify the objects significantly faster than with the use of traditional encoding algorithms that
depended on only the present stimulus intensity. Thus, artificial touch can be sculpted by patterning the sensory
feedback, and biologically inspired patterns elicit more interpretable and useful percepts.

INTRODUCTION
State-of-the-art upper-limbprostheses have become capable ofmimick-
ing many of the movements and grip patterns of endogenous human
hands (1–3). Although these devices have the capabilities to replace
much of the motor function lost after hand amputation, the methods
for controlling and receiving feedback from these prosthetic limbs are
still primitive (4, 5). The advent of neuromuscular implant systems ca-
pable of recording efferent motor activity and stimulating afferent sen-
sory nerve fibers improves the transfer of sensorimotor information to
and from a user’s peripheral nervous system, paving the way for more
dexterous bionic hands (6–9).

Conveying sensory feedback through an electrical interface with
the peripheral nervous system has been shown to confer functional
benefits (9–16). However, demonstrations of these improvements
are limited, and the sensory encoding algorithms themselves are often
unsophisticated. The human hand is innervated by several types of
tactile nerve fibers that each respond to different aspects of skin defor-
mations. Manual interactions generally activate all of the fiber types,
and tactile percepts are shaped by complex spatiotemporal patterns of
activation across the different afferent populations (17, 18). One of the
notable features of the aggregate afferent activity is the massive phasic
bursts during the onset and offset of contact and the far weaker re-
sponse during maintained contact (19–22). Most extant sensory en-
coding mechanisms track sensor output (e.g., the absolute pressure,
force, or torque from a prosthetic device) by modulating stimulation
intensity and thus disregard this important and salient aspect of
natural sensory feedback (9, 10, 12, 23–29). To the extent that artifi-
cially induced sensory signals mimic natural ones, they are likely to

elicit more naturalistic percepts and confer greater dexterity to the
user (15, 30).

In the present study, we first demonstrate that closed-loop sensory
feedback improved performance on dexterous tasks and enabled sen-
sory discrimination during active manipulation of objects. We then
show that artificial sensory experiences were enriched when the stim-
ulation regimes were designed to mimic the natural patterns of neu-
ronal activation that are evoked during manual interactions with a
native hand. These results constitute an important step toward the de-
velopment of dexterous bionic hands and have broad implications for
neural interfaces and prosthetic devices.

RESULTS
We implanted oneUtah Slanted ElectrodeArray (USEA) in themedian
nerve and another in the ulnar nerve, plus eight electromyographic
recording leads (iEMGs) in the forearmmuscles of an individual with
a transradial amputation halfway between the wrist and elbow. The
participant used this neuromyoelectric interface to control and sense
through a state-of-the-art dexterous sensorized prosthetic hand and
wrist (LUKE arm, DEKA; Fig. 1). Control signals were obtained using
the filtered iEMG recordings as input to a modified Kalman filter
(29, 31). The participant was able to control all six DOFs of the pros-
thesis independently, proportionally, and simultaneously in real time,
achieving performance comparable with those of clinically available
prosthetics in the modified Box and Blocks test (fig. S1) (32)—a stan-
dard test of manual dexterity—and efficiency comparable with that of
able-bodied participants in a novel foraging task (fig. S2) (33). Record-
ings of muscle activation remained reliable over the entire duration of
the study (14 months). Using muscle recordings rather than neural
ones as control signals eliminates the problem of stimulation artifacts
and allows for uncompromised sensory feedback.

Electrical stimulation of the residual nerves evokes
sensations on the phantom hand
Electrical stimulation of the residual nerves through the chronically
implanted USEAs evoked localized sensations that were experienced
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on the phantomhand. The participant reported up to 119 sensory per-
cepts distributed over the hand and varying in their quality (Fig. 2 and
fig. S3). Asmight be expected given the known patterns of innervation
of the skin, a preponderance of percepts originated in the fingers and
particularly the fingertips. The quality of the percepts also varied;
some were described as “vibration” (36%), “pressure” (29%), or “tap-
ping” (3%), which were likely associated with activation of cutaneous
tactile nerve fibers; others were described as pain (16%), presumably
reflecting activation of nociceptive fibers; and a few were described as
“tightening” (12%) and joint movement (3%), presumably reflecting
activation of proprioceptive nerve fibers such as muscle afferents. Ac-
tivation of contact sensors on the prosthetic hand triggered stimula-
tion of individual USEA electrodes or groups of USEA electrodes with
congruent receptive fields. For example, when contact was made with
the index fingertip sensor, a current was delivered throughUSEA elec-
trodes with projection fields on the index fingertip of the phantom;
that way, when the prosthetic index fingertip made contact with an
object, the participant experienced a sensation on the index fingertip.

Sensory feedback improves grasping performance
The grip force required to grasp an object depends on its mass and on
the coefficient of friction between skin and object: Heavy and slippery
objects are gripped with more force than are light, high-friction ones
(34).With our native hands, we are exquisitely proficient at exerting just
enough pressure on an object to grasp it, an ability for which we rely on
the sense of touch (34).

Some tests of manual dexterity do not benefit from tactile feedback.
For example, performance on the modified Box and Blocks test is only
slightly improvedwith touch because visual feedback is available and no
penalty is incurred for exerting too much force on an object. However,
other tests ofmanual dexterity are highly dependent on tactile feedback.
In one such test, a participant moves an object from one location to
another, as in the modified Box and Blocks test (fig. S1). However,
the object is “fragile” and “breaks” if squeezed too hard (fig. S4) (35, 36).

The participant moved the object without breaking it significantly
more often with sensory feedback than without (32 of 40 times versus
22 of 40 times; Pearson’s c2 test, P = 0.017; Fig. 3) and did so more ra-
pidly (9.13 ± 0.44 s versus 11.14 ± 0.49 s per trial; t test, P< 0.001; Fig. 3).

Performanceof activities of daily living (ADLs)often involves dividing
attention between multiple simultaneous subtasks—e.g., holding a jar
while twisting off its lid—so sensory feedback that is attentionally
demanding is inappropriate (37). To testwhether the sensory feedback
conveyed throughnerve stimulationwas resistant to divided attention,
we had participants perform the fragile object test while counting
backward.We found that the feedback-induced boost in performance
was maintained with divided attention but only the effect on duration
remained statistically significant under this condition (5.91 ± 0.20 s
versus 7.68 ± 0.42 s; t test, P < 0.001; Fig. 3).

Another way to assess the impact of sensory feedback on object
interactions is to characterize the degree to which we exert a consistent
amount of force on an object upon repeated grasping (38). To test this
capability, we had the participant repeatedly grasp a load cell with the
prosthetic hand. Sensory feedback was provided on some experimental
blocks but not others. The participant’s grip performancewasmore pre-
cise with sensory feedback than without, as evidenced by less variable
grip force on six of eight objects (Fig. 4). Furthermore, sensory feedback
significantly reduced the coefficient of variation (ratio of grip precision
to grip force) across all objects [Fig. 4 and fig. S5 show the standardized
Grasping Relative Index of Performance (GRIP) for this test] (38).

Sensory feedback enables haptic perception
Whenwemanipulate objects, we acquire information about their shape,
size, and texture through sensory signals from our hands (39, 40). Hap-
tic perception relies on an interplay between exploratory movements

A B

C

Utah Slanted Electrode Array

Helical Wire Bundle

Suture Wings

External Connector

DEKA LUKE arm

Fig. 1. Participant and sensorized bionic hand. A transradial amputee (A) had
two total USEAs (B) implanted, one each, into the residual median and ulnar nerves
of the arm. Activation of contact sensors on the DEKA LUKE arm (C) triggered stim-
ulation of individual USEA electrodes or groups of USEA electrodes so that the am-
putee felt a sensation on his phantom hand at the corresponding location. For
example, when contact was made with the index fingertip sensor, current was
delivered through USEA electrodes with projection fields on the phantom index
fingertip. Thus, when the prosthetic index fingertip made contact with an object,
the participant experienced a sensation on the index fingertip.

Fig. 2. Centroids of the projected fields for cutaneous percepts (circles) and
location of proprioceptive percepts (black arrows) evoked by stimulation
through individual USEA electrodes in the residual median or ulnar nerves.
A total of 119 sensory percepts were evoked (72% from median nerve) 2 weeks
after the implantation surgery. The quality of the evoked percepts varied across
electrodes: 37% vibration (red), 29% pressure (green), 16% pain (blue), 12% tight-
ening (orange), 3% movement (arrows), 3% tapping (yellow), and 1% buzzing
(black). A map of the complete projected fields can be found in fig. S3.
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and the sensory consequences of those movements (41). To assess the
degree to which the prosthesis could convey object information, we
developed a closed-loop sensorimotor task in which the participant
actively manipulated one of two objects with the prosthetic index finger
(fig. S6). Stimulation was at a fixed frequency and amplitude and was
delivered as long as contact with the object was maintained. On each

trial, one of two objects was presented—a golf ball or a (larger) lacrosse
ball—and the participant’s taskwas to report the size of the object (small
versus large). Alternative sensory cues were reduced or eliminated by
having the prosthesis mounted externally on a table (rather than being
worn by the participant) and by having the participant wear an eye
mask and headphones. The participant was able to perform this task
almost perfectly with the sensory feedback, correctly reporting the size
on 31 of 32 object presentations (binomial test, P < 0.0001).

To further assess haptic perception, we developed a closed-loop
sensorimotor task in which the participant actively manipulated one
of two objects—a soft foam block or a hard plastic block—and dis-
criminated the compliance (soft versus hard; fig. S7). In this experiment,
the amplitude of electrical stimulation increased linearly with the
output of the sensor. The participant was able to distinguish between
the two objects significantly better than chance (60 of 80 trials; bino-
mial test, P < 0.0001) and did so after squeezing the object several
times (Fig. 5), highlighting the interplay between motor behavior
and sensory feedback.

Biomimetic peripheral nerve stimulation improves
object discrimination
In the studies described above, sensory feedback provided either a
contact signal or a signal proportional to the contact force. Although
both regimes of stimulation led to significant improvements in
closed-loop sensorimotor tasks, neither regime is liable to produce nat-
uralistic patterns of activation in the nerve. Interactions with objects are
characterized by a strong burst of activation at the onset and offset of
contact and much weaker activation during maintained contact (42).
This initial onset conveys important information about the shape of
the object (40). The aggregate response of tactile nerve fibers is
determined not only by the degree towhich the skin is indented but also
by the rate at which the skin is indented, and the latter component
dwarfs the former one.
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Fig. 4. Sensory feedback improves grip precision. (A) Forces (means ± SD) generated by the participant when grasping a load cell while viewing one of eight
different virtual objects. Sensory feedback improved grip precision, as evidenced by less variable grip force on six of eight objects. Without sensory feedback, the
participant erred on the side of caution and underestimated desired grip force for fragile objects (bread, eggs, and open water bottle). (B) Coefficient of variation
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Fig. 3. Sensory feedback improves object manipulation. The participant’s task
was to move a fragile object that breaks if the grip force is too strong. With sen-
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induced boost in performance was maintained, but only the effect on duration
remained statistically significant. *P < 0.05, n = 80 for both basic and distr. cases.
Data show means ± SEM.
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We therefore sought to implement a sensory feedback algorithm
that incorporates this temporal property of natural tactile signals. As a
first-order approximation, we developed a sensory feedback algorithm
in which the intensity of stimulation was proportional not only to the
contact force but also to its rate of change. This first-order biomimetic
algorithm leads to stronger stimulation at the contact onset, when
the rate of change is highest to mimic the phasic bursts observed
in natural nerve activation during contact transients. To test this
simple biomimetic algorithm, we had the participant discriminate
the size and compliance of objects, and we compared his performance
with that using the standard sensory encoding algorithms (contact
tracking and force tracking). We found that the participant was able
to perform these tasks significantly faster with the biomimetic feedback
than with its nonbiomimetic counterparts. Biomimetic sensory
feedback improved response time by 24% for size discrimination
(11.78 ± 0.75 s versus 8.94 ± 0.79 s; t test, P < 0.05; Fig. 5) and by
44% for compliance discrimination (14.16 ± 1.05 s versus 7.91 ± 0.81 s;
t test, P < 0.005; fig. S7).

In the above implementation of biomimetic feedback, the peak
intensity of stimulation was higher than with nonbiomimetic feedback
because the overall charge was approximatelymatched. One possibility,
then, was that the improvement in performance with biomimetic
feedback was a consequence of the higher peak stimulation intensity.
Although a higher peak firing rate might itself be more biomimetic, im-
proved discrimination would not necessarily depend on differences in
temporal firing patterns between the biomimetic and nonbiomimetic
encoding schemes. To distinguish between these possibilities, we im-
plemented a version of the biomimetic algorithm such that the peak

stimulation intensity (pulse amplitude and frequency) wasmatched to
that of the nonbiomimetic algorithms. Evenwithmatched peak inten-
sity, the biomimetic feedback led to a 46% improvement in performance
(7.56 ± 1.08 s versus 4.64 ± 0.77 s; t test, P < 0.005; Fig. 5). Another
potential confound is that biomimetic algorithm might peak faster
than the nonbiomimetic ones, leading to faster performance. However,
the improvement in response time was on a longer time scale than the
shift in peak stimulation, so this effect was not a trivial consequence
of the timing of stimulation. Rather, it reflects an improvement in the
intuitiveness and informativeness of the artificial sensory signals,
which capture some of the essential temporal characteristics of natural
tactile signals.

The above results suggest that dynamics of the response evoked
through electrical stimulation—if it mimics a natural response—can
lead to more interpretable and useful sensory feedback. However, the
above biomimetic algorithm captured some aspects of the natural tactile
feedback—namely, the increase in sensitivity to contact transients—but
not others, borne out of the idiosyncratic properties of the different
classes of tactile nerve fibers and their respective innervation densities.
In light of this, we tested another sensory encoding algorithm that
sought to more faithfully mimic natural nerve activations. Briefly, this
algorithm is designed to reflect the measured sensitivity of populations
of nerve fibers to skin indentation and its two derivatives (rate and
acceleration) (19). With this second-order biomimetic feedback, the
participant identified object compliance 56% faster than with the tra-
ditional linear feedback (6.71 ± 1.47 s versus 2.93 ± 1.37 s; t test,P< 0.05;
Fig. 5). These results further demonstrate that biomimicry improves the
intuitiveness of the artificial sensory feedback.
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Fig. 5. Biomimetic sensory feedback improves performance on object discrimination tasks. (A) Example force (top; blue) and change in force (top; red) when the
participant actively manipulated a soft foam block. Note the repetitive waxes and wanes in force (e.g., at ~2 s), associated with the participant’s active exploration of the
object. Traditional linear encoding tracks force only (bottom; light blue), whereas the first-order biomimetic encoding incorporates the first derivative of force (bottom;
light red) and second-order biomimetic mimics the aggregate responses of tactile nerve fibers (bottom; light green). Linear algorithms were scaled (doubled) such that
peak stimulation amplitude and frequency were matched to the biomimetic algorithms; arrows highlight the time when peak stimulation occurs for the different
algorithms. (B) Biomimetic sensory feedback improved response time relative to its nonbiomimetic counterpart in size and compliance (comp.) discrimination tasks.
Performance across experiments varied because of changes in stimulation parameters, but biomimetic stimulation consistently outperformed nonbiomimetic stimulation.
*P < 0.05, n = 32 for binary versus biomimetic 1, n = 48 for linear versus biomimetic 1, and n = 32 for binary versus biomimetic 2. Data show means ± SEM.
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Participant successfully performed a variety of ADLs
An important concern in laboratory demonstrations of neuroprosthetic
control is whether tasks that are used to assess the performance of the
prosthesis are ecologically valid. With regard to the present study, will
improvements in performance with sensory feedback on laboratory
tasks translate to improved performance on ADLs? We evaluated this
by having the participant complete several ADLs over 3 days of testing.
With just the prosthesis alone or in conjunction with his intact hand, he
performed basic ADLs (feeding and dressing) (43), instrumental ADLs
(housework,meal preparation, and technology use) (44), andADLs that
he had found challenging without the prosthesis (loading a pillow into
a pillowcase, hammering, donning, and doffing a ring; Fig. 6). Improve-
ments are difficult to quantify withADLs, but the participant noted that
sensory feedback was particularly useful when manipulating fragile
objects (e.g., eggs and grapes) and spontaneously reported that he en-
joyed the sensation of “feeling” objects in his hand.

DISCUSSION
In the present study, we demonstrate that artificial sensory feedback
improves fine motor control and confers to the user the ability to sense
object properties through a bionic hand. Furthermore, these artificial
sensory experiences are enrichedwhen the sensory feedback is designed
to mimic the nervous system’s natural language. By capturing some of
the essential characteristics of natural tactile signals, biomimetic stimu-
lation improves the intuitiveness and informativeness of the sensory
feedback, as evidenced by swifter object discrimination capabilities.

The present results build on previous work, showing that sensory
feedback leads to improved grip and handling of fragile objects (10).
We extend these previous findings by showing that grasp force is

achieved faster and more accurately and that fragile objects are trans-
ferred faster with sensory feedback than without. These improvements
are augmented when the sensory feedback is biomimetic. Although
previous studies have demonstrated that object properties can be sensed
through a prosthetic hand (12), we extend these previous findings to a
different sensorimotor task—compliance discrimination—and directly
demonstrate the improvement of biomimetic feedback relative to its
nonbiomimetic counterpart. In this respect, our work is consistent with
a recent study, showing that biomimetic stimulation leads to more
naturalistic percepts, leads to greater embodiment, and improves
performance on object manipulation tasks (30). In the present study,
we extend these previous findings to a new technology and a new task,
an important replication of the benefits of sensory feedback and bio-
mimicry, given that the relevant studies thus far have involved a single
participant (12, 13, 15, 30, 45).

Amputees have expressed a desire for sensory feedback to reduce
their dependence on visual feedback (37). The ability to feel grip force
while grasping and holding objects is the most important aspect of
sensory feedback for amputees (46). The sensory feedback provided
here allowed the participant to perform object discrimination tasks
without visual or auditory feedback and enabled the participant to
exert grip forces more precisely.

Ideally, sensory peripheral nerve interfaces and encoding algorithms
would activate each afferent nerve fiber selectively and independently, so
as to replicate the spatiotemporal pattern of neural discharges that would
be transmitted from an intact hand. The ability of different USEA elec-
trodes to activate a large number of different percepts (Fig. 2) increases
the ability to provide more biomimetic sensory input. The present
experiments used relatively simple receptive fields and sensorimotor tasks
to study the importance of temporal aspects of sensory encoding at a pop-
ulation level in isolation and hence did not fully explore these capabilities.
However, such capabilitiesmay prove increasingly useful with richer sen-
sorimotor tasks and with the advent of prosthetic hands with greater
numbers and varieties of sensors.

In addition to sensorimotor functional improvements, closed-loop
sensorized prostheses often bringpsychological benefits (9, 10, 29, 47–49).
The same participant in this study reported decreased phantom pain
and increased embodiment of the prosthesis as a result of the sensory
feedback (29). After the study, the participant highlighted the emotional
impact of artificial touchwhen he used the bionic hand to shake hands
with his wife and felt her touch through it for the first time. The func-
tional and emotional benefits of dexterous motor control and bio-
mimetic sensory feedback are likely to be further enhanced with
long-term use, and efforts are underway to develop a portable take-
home system (50).

MATERIALS AND METHODS
Study design
We considered the participant for this chronic implant study due to the
transradial level of his amputation, his willingness to volunteer, and
overall good health. Termination of the study and explantation of the
electrodes were voluntary or would occur if the implants were causing a
health risk as indicated by a qualified physician or at 14months after the
implant date. Previous studies from this group (6, 51, 52) were limited in
duration (less than 5weeks) for safety considerations; because no health
risks emerged from these previous studies, the University of Utah Insti-
tutional Review Board and the participant agreed to a 14-month dura-
tion for this study.

A B

C D

Fig. 6. Sensory feedback supports ADLs. The participant performed several
one- and two-handed ADLs while using the sensorized prosthesis, including
moving an egg (A), picking grapes (B), texting on his phone (C), and shaking hands
with his wife (D).
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The experiments performed in this study were completed in 2- to
3-hour sessions, one to three times a week, across the 14-month du-
ration of the study. The number of replicates per experiment was
matched to that of previous studies involving fragile object manipula-
tion (10), object discrimination (12), and the Grasping Relative Index of
Performance (38).Datawere considered outliers if they fell outside three
SDs from the mean (38).

Human participant and implanted devices
A male left transradial amputee, whose amputation occurred 13 years
before the onset of the study, underwent surgeries and performed
experiments with informed consent and under protocols approved by
the University of Utah Institutional Review Board and the Department
of the Navy Human Resources Protection Program. Under general
anesthesia, two 100-electrode USEAs were implanted in the median,
and ulnar nerves of the residual limb, proximal to the elbow, and eight
iEMGs, with four electrical contacts each, were implanted in the upper
forearm with attempted targeting of each lead to different lower-arm
extensor or flexor muscles. Additional information and figures regard-
ing the devices and implantation procedure can be found in the Supple-
mentary Materials and (29), which reports on the same participant in
this study.

Decoding motor intent
Motor intent was decoded from residual forearm muscles recorded
at 1 kHz, while the participant actively mimicked prosthetic hand
movements, as previously reported in (6, 29, 31). Every 33 ms, the
mean absolute value (MAV) over a 300-ms window was calculated
for the 32 iEMG electrodes and the 496 possible differential pairs. A
total of 528 features were generated (MAV for 32 single-ended and
496 differential pairs). To save computational time and reduce potential
overfitting, the 528 features were then down-selected to the best 48 fea-
tures using a Gram-Schmidt channel-section algorithm (53). These
48 features served as an input to a modified Kalman filter (MKF)–
based decode that uses customizable, non-unity thresholds and gains
(29, 54). The output of theMKFwas used to directly control the position
or velocity of the six DOFs of the prosthesis. The ability to proportion-
ally control position or velocity was toggled on a DOF-by-DOF basis.
More information regarding the prosthetic control algorithm can be
found in (54) and the Supplementary Materials.

Mapping of USEA-evoked percepts
Electrical stimulation was delivered via USEAs using the Ripple
Neuro LLC Grapevine System with Micro2+Stim front ends. All stim-
ulationwas delivered as biphasic, cathodic-first pulses, with 200- to 320-ms
phase durations and a 100-ms interphase duration. The stimulation fre-
quency varied between 10 and 500Hz, and stimulation amplitudeswere
in the range of 1 to 100 mA.

USEA stimulation threshold maps were collected roughly every 4 to
8 weeks, during which each electrode of the USEAs was stimulated in
isolation at increasing amplitudes. Electrodes that evoked a sensory
percept at less than 100 mAwere noted, and the location, quality, and
intensity of each percept were documented as well as the threshold
amplitude at which the percept was evoked. For these mappings,
stimulation was delivered in a pulsed fashion with a 500-ms train
of 100-Hz stimulation being delivered every second. Additional de-
scriptions for electrode mapping (6) and the stimulation parameters
we used (29) exist elsewhere. Sensory percepts were stable over the
course of these experiments and persisted 14 months after the implant

(fig. S8). More information regarding the stability of the USEA-evoked
percepts is available in the Supplementary Materials.

Encoding sensory feedback
Stimulation through a single USEA electrode typically evoked a single
percept with a distinct receptive field (e.g., sensations were isolated to
only the index finger, or only the middle finger, but not both fingers).
Occasionally, stimulation of a single USEA electrode would evoke
multiple percepts in distinct receptive fields (e.g., stimulation of a single
USEA electrode evoked sensations on both the index and middle
fingers); these electrodes with multiple distinct percepts were not used
for real-time sensory feedback.

The distinctly evoked percepts were then assigned to a single contact
(cutaneous) or motor (proprioceptive) sensor on the prosthesis with a
corresponding receptive field. For example, if stimulation through
USEA electrode X evoked a pressure-like percept on the middle finger
and if separately stimulating through USEA electrode Y also evoked
a percept on the middle finger, then both electrodes X and Y would
be assigned to the middle finger contact sensor on the prosthesis. We
stimulated between 1 and 12 USEA electrodes that had overlapping
receptive fields with a given sensor on the prosthesis (Table 1). Because
of the time-intensive nature of assigning all electrodes, a subset of sen-
sors on the prosthesis were used for each task; the specific sensors used
for a particular task are detailed in the corresponding section for that
task. Activation of sensors resulted in biphasic, charge-balanced stim-
ulation (200- or 320-ms phase durations, cathodic first, with a 100-ms
interphase duration). We encoded percept intensity by modulating
the frequency or current amplitude of stimulation with either linear
or biomimetic encoding algorithms (see next section). For all encod-
ing algorithms, the intensity of the sensation increased with increas-
ing stimulation amplitude and frequency, but there were no reported
changes in perceptive field location or sensory modality.

Stimulation parameters were adjusted at the start of each exper-
imental session to maximize the naturalism and perceived intensity
range of the stimulation. To the extent possible, the participant’s sensory
experience (e.g., perceived intensity range, perceptive field, etc.) was
kept consistent across days. Stimulation typically produced natural-
feeling pressure sensations on the palmar aspects of the hand. The exact
parameters (electrodes, encoding algorithm, amplitude, frequency, and
pulse duration) used for each task are summarized in Table 1.

Sensory encoding algorithms
For binary sensory encoding, the stimulation was fixed at the specified
amplitude (100 mA, 320 mS) and frequency (100 Hz) as long as any
contact was made. For traditional, linear sensory encoding, the stimu-
lation frequency and amplitude increased solely on the basis of the ab-
solute sensor value. For biomimetic 1 sensory encoding, the stimulation
frequency and amplitude increased on the basis of the absolute sensor
value and on positive rate of change of the sensor; stimulation tracked
the current sensor value plus 10 times any positive finite difference be-
tween the current and previous sensor value. For scaled, traditional,
linear sensory feedback, the stimulation frequency and amplitude were
multiplied by a constant factor (=2) such that the range was comparable
with that of the biomimetic stimulation (Fig. 5). Stimulation ampli-
tude and frequency increased together over their respective ranges
(see Tables 1 and 2).

The biomimetic 2 sensory encoding algorithm was developed from
recordings of nonhuman primate cutaneous afferents in response to
physical contactwith the fingertip (19). This computationally inexpensive
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model describes the instantaneous firing rate (i.e., stimulation frequency)
of the afferent population using the contact stimulus position, velocity,
and acceleration. Similar to other biomimetic algorithms (30), the bio-
mimetic 2 sensory encoding algorithm leverages TouchSim (55) to
simulate the responses of all tactile fibers to any spatiotemporal defor-
mation of the skin of the hand. This model—dubbed TouchMime—
provides a more computationally efficient approach to the aggregate
response of the nerve to time-varying pressure applied to the fingertip,
allowing for high-accuracy biomimetic sensory encoding in real time.
In addition, the parameters of the model were tuned for the sampling
rate of theDEKALUKE arm sensors (30Hz) and forUSEA stimulation
(i.e., intrafascicular stimulation at 30 Hz) at a fixed, suprathreshold
stimulation amplitude, further improving the accuracy of the bio-
mimetic encoding (19). Additional details regarding themodel develop-
ment and validation can be found in (19).

Bothmodels presented here are distinct from those used in (30). The
biomimetic 1 algorithm concurrently modulates frequency and ampli-
tude most closely replicating the responses of populations of slowly
adapting type 1 (SA1) and rapidly adapting (RA) fibers. The biomimetic
2 algorithm provides amore faithful replication of a complete aggregate
nerve response, keeping the population size constant (fixed stimulation
amplitude) and mimicking the aggregate firing rate of SA1, RA, and
Pacinian fibers within that population of the nerve. Both models
are computationally efficient, allowing for real-time biomimetic sensory
encoding. Analytic formulations for each encoding algorithm are
provided in Table 2.

Wedid not attempt tomeasure the intuitiveness or naturalismof the
sensory encoding algorithms, nor did we track the participant’s ability
to interpret this feedback. Experimental sessionswere kept under 2 hours,
and no learning effects were observed in this time frame.

Fragile object test
The fragile object test [originally introduced in (35)] has been used as a
variant of the modified Box and Blocks test (36) to show the benefits of
sensory feedback (14, 30, 36). Our implementation of this test differed
from its predecessors in that the object was much heavier and the ratio
between the weight and breaking force wasmuch smaller, rendering the
overall task more difficult. In (36), the fragile object weighed 8 g and
broke if a force of 10.7 ± 1 N was applied to it (ratio of 1.34 N/g),
and in (14, 30), the object weighed ~80 g and broke with a force of
1.23 ± 0.02 N (ratio of 0.15 N/g). In contrast, the object used in this
study weighed 630.57 g and broke at 14.79 ± 0.34 N (ratio of 0.02 N/g).

The participant used only thumb abduction/adduction, and artificial
sensory feedbackwas provided on the basis of the thumb contact sensor.
Trial failure was defined as “breaking” the object, which occurred when
the compression force exceeded 14.79 ± 0.34 N, or an inability to move
the object in 30 s. Trial success was defined as a trial in which the par-
ticipant lifted and placed the unbroken object within an adjacent circle
on the table (~10 cmaway)within 30 s. In half of the sets, the participant
was intentionally distracted by having to count backward by twos from
a random even number between 50 and 100.

A single trial was performed once every minute. A single exper-
imental block consisted of eight trials with or without artificial sen-
sory feedback. The participant completed five experimental blocks
with and without sensory feedback for both the basic and distracted
conditions. The experimental blocks were counterbalanced to reduce
order effects. Under all conditions, the participant was able to use
audiovisual feedback to help locate and grasp the object, as well as to
identify when the object broke.

Statistical analyses were run separately for the basic and distracted
conditions. A 50% binomial test was used to determine whether

Table 1. Stimulation parameters used for each task.

Task Sensory encoding algorithm(s) USEA electrodes Amplitude
(mA)

Frequency
(Hz)

Duration
(ms)

Fragile object (first set) Traditional linear 2, 5, 6, 9, 10, 12, 15, 16, 20, 25 80–100 10–100 200

Fragile object (second set) Traditional linear 2, 5, 6, 9, 10, 12, 15, 16, 20, 23, 25 70–100 10–100 200

GRIP Biomimetic 1 5, 6, 9, 10, 12, 15, 16, 20, 23 80–95 10–200 320

Size discrimination Biomimetic 1 2, 5, 6, 9, 10, 12, 15, 16, 20, 23 80–95 10–200 200

Size discrimination Binary 5, 6, 9, 10, 12, 15, 16, 20, 25, 26 100 100 320

Compliance discrimination (first set) Biomimetic 1 versus traditional linear 2, 5, 6, 9, 10, 12, 15, 16, 20, 23 90–100 10–200 200

Compliance discrimination (second
set) Biomimetic 1 versus traditional linear 2, 5, 6, 9, 10, 12, 15, 16, 20, 23 80–95 10–200 320

Compliance discrimination (first set) Biomimetic 1 versus scaled traditional
linear 2, 5, 6, 9, 10, 12, 15, 16, 20, 23 80–95 10–200 320

Compliance discrimination (second
set)

Biomimetic 1 versus scaled traditional
linear 5, 6, 9, 10, 12, 15, 16, 20, 23, 25, 26 80–100 10–200 320

Compliance discrimination Biomimetic 2 versus scaled traditional
linear 5, 6, 9, 10, 12, 15, 16, 20, 23, 25, 26 70 10–400 320

ADL (first set) Traditional linear 23, 26, 33, 41, 42, 47, 63 70–100 10–100 200

ADL (second set) Traditional linear 23, 26, 27, 33, 34 60–100 100 200

ADL (third set) Traditional linear 9, 10, 20 80–100 10–100 200
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performance was significantly greater than chance alone. For compar-
ison of completion time for the successful trials, response times showed
no deviations from normality (Anderson-Darling, Jarque-Bera, and
Lilliefors tests). Unpaired t tests (unequal sample size due to different
success rates) were then used to compare completion times.

Object discrimination tasks
For size discrimination, the participant had to distinguish between a
“large” lacrosse ball and a “small” golf ball (fig. S6). The two objectswere
chosen so that they represented real-world interactions, minimized dif-
ferences in compliance, and maximized differences in size while still
requiring some degree of active flexion to make contact. Relative to the
index finger’s full range of motion, the large object required a 19% de-
crease in joint angle to make contact, and the small object required a
49% decrease. Response time was measured from the start of the trial
to when the participant verbally reported the object’s size.

For compliance discrimination, the participant had to distinguish
between a “soft” foam block and a “hard” plastic block (fig. S7). The soft
blockwas cut tomatch the size of the hard block so that stimulation due
to initial contact occurred at the same degree of index flexion. Response
time was measured from the start of stimulation (i.e., measurable con-
tact was made with the object and the participant felt the object) to the
time when the participant verbally reported the object’s compliance.

We did not attempt to quantify how many levels of size and com-
pliance the participant was able to discriminate. With traditional linear
feedback, the just-noticeable difference of the neural stimulation would
bind the discrimination capabilities. Instead, we focused on quanti-
fying improvements in the intuitiveness of the sensory feedback
(measured by response time) when biomimetic stimulation regimes
are used.

For both, the output of the modified Kalman filter was used to
directly control the position of the index finger. Position control (i.e.,
postural control) provided improved performance relative to velocity
control (fig. S6), which is consistent with the natural encoding
schemes of the hand (56). The participant received cutaneous sensory
feedback from the index contact sensor; proprioceptive sensory feedback
was not provided, although endogenous proprioception of residual
forearm muscles and efference copy may have been present. The par-
ticipant was blindfolded and wore headphones, and the physical pros-
thesis was detached from his residual limb, so that external cues about
the object were eliminated.

A single trial was performed once every minute. For each trial, the
participant was given 30 s to complete the task. A single experimental
block consisted of eight trials using a single algorithm. The participant
completed two experimental blocks for each size discrimination algorithm
and two to six experimental blocks for each compliance discrimination
algorithm. The order of the objects was pseudorandomized such that
equal numbers of both appeared in the experimental block. The exper-
imental blocks were counterbalanced to reduce order effects.

Statistical analyses were run separately for each algorithm com-
parison. Because of limited time with the participant, direct compar-
isons were limited to biomimetic 1 versus traditional linear, biomimetic
1 versus scaled traditional linear, and biomimetic 2 versus scaled tradi-
tional linear. A 50% binomial test was used to determine whether
performance was significantly greater than chance alone. For algorithm
comparisons, response times showed no deviations from normality
(Anderson-Darling, Jarque-Bera, and Lilliefors tests). Paired t tests were
then used for these comparisons on a trial-by-trial basis to control for
order effects and sensory adaptation (57). Statistical analysis of response
times with biomimetic and nonbiomimetic encoding algorithms was
confined to algorithms using the same stimulation parameters on the

Table 2. Sensory encoding algorithms. Ft, frequency at time t; At, amplitude at time t; ct, normalized contact value at time t; vt, velocity at time t; at, acceleration
at time t; min, minimum value; max, maximum value. Note that for all algorithms, sensory feedback is off and no stimulation occurs when ct = 0.

Sensory encoding algorithm(s) Analytic formulation

Binary Ft = Fmin
At = Amin

Traditional linear Ft = ct(Fmax − Fmin) + Fmin
At = ct(Amax − Amin) + Amin

Scaled traditional linear Ft = 2ct(Fmax − Fmin) + Fmin
At = 2ct(Amax − Amin) + Amin

Biomimetic 1

Ft ¼ ctðFmax � FminÞ þ Fmin; vt < 0
ð5vt þ ctÞ � ðFmax � FminÞ þ Fmin; vt≥0

�

At ¼ ctðAmax � AminÞ þ Amin; vt < 0
ð5vt þ ctÞ � ðAmax � AminÞ þ Amin; vt≥0

�

Biomimetic 2 Ft = 186ct − 185ct−1 + 1559vt − 360vt−1 − 109vt−2 + 364at + 170at−1 − 3
At = Amin

Table 3. Motor control specifications.

DOF Range Precision Angle at rest

Thumb adduction/abduction 0°–75° 0.08° per bit 22.5°

Thumb reposition/opposition 50°–100° 0.10° per bit 80°

Index extend/flex 0°–90° 0.09° per bit 27°

D3, D4, and D5 extend/flex 0°–90° 0.09° per bit 27°

Wrist supinate/pronate −120°–175° 0.29° per bit 0°

Wrist extend/flex −55°–55° 0.11° per bit 0°
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same day to avoid any variations in evoked sensations that may have
occurred across days.

Grasping Relative Index of Performance test
Adetailed descriptionof theGRIP test is reported elsewhere (38). Briefly,
a screen was placed between the participant’s line of sight to the pros-
thesis and the load cell to eliminate audiovisual cues from the prosthetic
hand. In contrast to the fragile object test, the GRIP test measures the
ability to modulate grip force without audiovisual feedback. The partic-
ipant was presented with pictures of one of eight objects (Fig. 4) and
instructed to grab the load cell with a force appropriate for gripping
the object shown in the picture. The participant grabbed each of
the eight objects 20 times without sensory feedback and 20 times with
sensory feedback. Outliers and trials with preemptive grasps were not
included in the analysis (38). Peak grasping forces showed no deviations
from normality (Anderson-Darling, Jarque-Bera, and Lilliefors tests).
Unpaired t tests were used to compare means, and Levene’s test was
used to compare SDs.

DEKA LUKE arm and ADLs
The DEKA LUKE arm, as used in this study, has 6 moveable DOFs
(Table 3), 6 position sensors, and 13 contact sensors (Table 4). The pros-
thetic is interfaced via a controller area network communication
protocol with 100-Hz update cycles. The accuracy of the movements
is dictated by the precision of themotor commands (Table 3). Formore
information regarding the accuracy of the control algorithm, see the
Supplementary Materials and (54).

The DEKA LUKE arm, in its transradial configuration, weighs
about 1.27 kg (58), slightly more than that of an intact human hand.
There are no temperature or pain sensors on the DEKA LUKE arm.
Furthermore, electrical stimulation of sensory afferents preferentially
activates larger diameter fibers first (59), making USEA-evoked pain
or temperature percepts uncommon.

The six position sensors correspond to the six moveable DOFs. The
13 contact sensors are made of nine torque sensors for contact applied
to the fingers and four force sensors for contact applied to the hand.
There is a torque sensor for digits D2 to D5 that detects torque applied
to the finger opposing flexion (e.g., during grasping of an object) and a
torque sensor for the lateral portion of D2 (e.g., during a key grip). D1
also has four additional torque sensors to detect contact due to adduc-
tion, abduction, reposition, or opposition.

ADLs were performed with the DEKA LUKE arm mounted to a
custom socket that fit to the residual limb of the participant. With only

the prosthesis or with in conjunction with his intact hand, the partici-
pant performed basic ADLs (feeding and dressing) (43), instrumental
ADLs (housework, meal preparation, and technology use) (44), and
ADLs that he had found challenging without the prosthesis (loading a
pillow into a pillowcase, hammering, donning anddoffing a ring; Fig. 6).
All ADLs were performed with audiovisual feedback to best approx-
imate real-world use. Traditional linear sensory feedback was provided
because ADLs were performed before implementing the biomimetic
encoding algorithms. Because of limited patient time and an inability
to precisely quantify performance, ADLs were not repeated with bio-
mimetic sensory feedback.

Statistical analyses
All statistical analyses were run with significance as a = 0.05. Data
were checked for normality to ensure that the appropriate parame-
tric analysis or nonparametric equivalent was used. Subsequent pair-
wise analyses were corrected for multiple comparisons using the
Dunn-Šidák approach. All data are shown as means ± SEM, unless
otherwise stated.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/32/eaax2352/DC1
Stability of the USEA
Decoding intended movements with a modified Kalman filter
Surgical procedure
Fig. S1. Modified Box and Blocks test.
Fig. S2. Prosthesis efficiency and profitability task.
Fig. S3. Projected fields of electrically evoked sensations.
Fig. S4. Fragile object test.
Fig. S5. Grasping Relative Index of Performance task.
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Insect-scale fast moving and ultrarobust soft robot
Yichuan Wu1,2,3, Justin K. Yim4, Jiaming Liang1,2,3, Zhichun Shao2,3, Mingjing Qi2,3,5, 
Junwen Zhong2,3*, Zihao Luo2, Xiaojun Yan5, Min Zhang6*, Xiaohao Wang1,6,  
Ronald S. Fearing4, Robert J. Full4,7, Liwei Lin1,2,3*

Mobility and robustness are two important features for practical applications of robots. Soft robots made of poly-
meric materials have the potential to achieve both attributes simultaneously. Inspired by nature, this research 
presents soft robots based on a curved unimorph piezoelectric structure whose relative speed of 20 body lengths 
per second is the fastest measured among published artificial insect-scale robots. The soft robot uses several 
principles of animal locomotion, can carry loads, climb slopes, and has the sturdiness of cockroaches. After with-
standing the weight of an adult footstep, which is about 1 million times heavier than that of the robot, the system 
survived and continued to move afterward. The relatively fast locomotion and robustness are attributed to the 
curved unimorph piezoelectric structure with large amplitude vibration, which advances beyond other methods. 
The design principle, driving mechanism, and operating characteristics can be further optimized and extended 
for improved performances, as well as used for other flexible devices.

INTRODUCTION
Mobility and robustness are two engineering challenges for robots. 
Unlike large-scale robots based on materials of high stiffness/density 
and powered by bulky actuators/motors, small-scale soft robots are 
often restricted to small actuators with low output power based on 
materials of low stiffness/density. Hence, insect-scale soft robots are 
known to be easily damaged, exhibit poor control of locomotion, or 
are slow moving due to the nature of their small structures. Improv-
ing the mobility, efficiency, and robustness of soft robots made of a 
deformable body with the capability to carry extra weights to per-
form various functions has been challenging (1–4). Researchers 
have tried to develop soft robots that negotiate complex environ-
ments by taking advantage of soft matter physics in the interdisci-
plinary field termed “robophysics” (5, 6). Recent advances include 
micro/millimeter-scale robots with good mobility, such as crawling 
robots (7–11), hopping robots (12, 13), and multi-legged robots 
(14–18). However, these robots are made of rigid or partially rigid 
parts, resulting in poor robustness and low adaptability to shape 
changes and/or external perturbations. On the other hand, soft 
robots actuated by humidity (19–21), light (22–24), heat (25), and 
magnetic force (26–28) have been demonstrated but have slow 
responses, whereas others require bulky setups to generate the external 
power sources such as magnetic fields. Robots using thin film–based 
actuators based on lead zirconate titanate (PZT) have been success-
fully developed (17, 18, 29–31), but PZT is a brittle material con-
taining poisonous lead. Polyvinylidene difluoride (PVDF) is soft, 
flexible, and lightweight, making it suitable for potential soft robot 
applications (32, 33), but one key challenge has been to generate fast, 
effective movement and even locomotion (34).

The locomotion mechanisms of animals continue to inspire the 
design of soft robots (4, 35). In particular, arthropods show how 
rapid, cyclic locomotion at high frequencies at this scale is possible 
without compromising robustness and survivability in harsh condi-
tions (36, 37). Flying mosquitos can oscillate or vibrate their wings 
at more than 800 Hz (38), and 1-mm mites attain relative ground 
speeds exceeding 200 body lengths per second (BL/s) (39, 40). In 
this work, we introduce fast and robust insect-scale soft robots based 
on a curved piezoelectric PVDF unimorph structure to achieve several 
key advancements: (i) Under an alternating current (AC) driving 
power near the resonant frequency (850 Hz) of the structure, a proto-
type 10-mm-long robot (0.024 g) attained a relative speed of 
20 BL/s—the fastest among published reports of insect-scale soft ground 
robots; (ii) after stepping on the robot with an adult human’s full 
body weight (59.5 kg, about 1 million times heavier than the robot), 
the robot could still move afterward, demonstrating exceptional 
robustness; (iii) the robot could move smoothly carrying a load 
weighing 0.406 g, which is six times heavier than that of the robot; 
(iv) further enhancement of agility was demonstrated by designing 
the moving mechanism to emulate features of galloping-like gaits 
using a two-leg prototype robot.

RESULTS
Structure and working mechanism
A prototype 3 cm–by–1.5 cm robot, consisting of a curved body and 
a leg-like structure at the front, is pictured alongside a U.S. quarter 
in Fig. 1A. A cross-sectional view scanning electron microscopy 
(SEM) image shows the unimorph structure made of an 18-m-thick 
PVDF layer, two 50-nm-thick palladium (Pd)/gold (Au) electrodes 
(top and bottom of the PVDF film), a 25-m-thick adhesive silicone, 
and a 25-m-thick polyethylene terephthalate (PET) substrate at 
the bottom. The PVDF layer can produce periodic extension and 
contraction by the piezoelectric effect under an AC driving voltage 
to change the shape of the robot; the details of the actuation mech-
anism are explained in section S1 and fig. S1. This results in an 
oscillatory center of mass (COM) trajectory pattern (see movie S1) 
similar to many running animals (36). Figure 1B compares the COM 
motion of a cockroach and our prototype robot. Although the robot 
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has a unique morphology compared with many animals, it also 
showed a wavelike path. We developed a two-segment mass-spring 
model to best predict the robot’s dynamic movements.

High-speed videos (sampling rate of 2000 frames per second) with 
a sequence of optical images seen in Fig. 1C have been used to record 
the postures and positions of the prototype robots (under −60 to 60 V 
of sinusoidal driving voltage at 200 Hz, which generates nonmaximal 
running performance; movie S2) running on a standard printing paper 
substrate. Within one cycle of the applied sinusoidal voltage, one set 
of the corresponding successive postures is depicted as states (I) to (V) 
in Fig. 1C as an example. In state (I) under −60 V, the body is ex-
tended and the front leg of the robot is in the ground-touching posture, 
whereas the abdomen is in the aerial posture. After 1.1 ms at state (II) 
under an applied voltage close to 0 V, the body recovers its initial 
shape, whereas the front leg of the robot is still in the ground- touching 
posture and the abdomen is in the aerial posture with a shorter dis-
tance to the ground as compared with that in state (I). In state (III) under 
+60 V, the body is contracted, and both the front leg and abdomen of 

the robot are in the ground- touching posture. In the first-half driving 
cycle from state (I) to state (III), the body transitions from extended 
near-flat shape, to the initially curved shape, and then to the contracted 
shape. These shape changes cause the front leg to strike against the 
ground and produce a forward-pushing ground reaction force. In the 
second- half driving cycle from state (III) to state (V), the body goes 
through the similar shape changes, with the reverse order from the con-
tracted shape to near-flat shape, which could cause the front leg to 
produce a backward-pushing ground reaction force to slow down the 
forward moving speed of the robot. Hence, we designed the bending 
angle of the front leg to be less than 90° to enhance the forward 
movements and reduce backward movements. Driven under high- 
frequency actuation coupled with various ground impact conditions 
and manufacturing variations, the exact shape changes and move-
ments of the robot are rather complex. However, by varying design 
and operation parameters, the forward moving speed of the robot 
could be optimized. For example, Fig. 1D shows the experimental 
results of the lateral displacement (red lines) and vertical displacement 

Fig. 1. The prototype and working mechanism. (A) Optical photo showing a robot connected with two electrical wires to the top and bottom electrodes, respectively, 
alongside a U.S. quarter coin. The inset SEM image shows the cross-sectional view of the prototype robot with different layers of materials. (B) Comparison of the wavelike 
running paths showing the movements of the COM of a cockroach (41) and a prototype robot (from movie S1). (C) Series of optical images recording the movements of 
a prototype robot in one driving cycle. (D) Applied driving signal (black line) and vertical (blue lines) and lateral displacements (red lines) of a prototype robot, where the 
bold solid lines are the average movements for 20 cycles. (E) Two-step cycles of the vertical displacement of the COM during cockroach running [red line for a period of 
60 ms, (41)] compared with a prototype soft robot (blue line for a period of 100 ms).
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(blue lines) of a prototype robot under a driving voltage between −60 
and 60 V (black line). In this analysis, the lateral/vertical displace-
ment is defined as the lateral/vertical movements of the COM of the 
robot with respect to the original position. The randomness of the 
individual cycle is clearly observed in both displacements, although 
the average vertical COM positions follow the driving patterns and the 
average lateral COM positions show incremental forward movement. 
Figure 1E compares two-step 
cycles of the vertical movement 
of a cockroach (41) and the pro-
totype soft robot (movie S1) 
with respect to time.

Animals appear to use res-
onant frequencies to oscillate 
their muscles and segments (42), 
with the flight muscles and 
thorax of flying insects serving 
as an example in the higher fre-
quency range (43). We found 
that it was also desirable to 
drive the prototype robots near 
their resonant frequencies for 
largest deformations. To con-
strain the running direction 
of the robot so as to charac-
terize their relative running 
speed, we used a transparent 
quartz tube with an inner di-
ameter of 1 inch, as shown in 
fig. S2 (A and B). In this case, a 
10-mm-long prototype (0.024 g) 
robot was used to achieve a 
relative running speed up to 
20 BL/s driven near its resonant 
frequency at 850 Hz. In com-
parison, under driving frequen-
cies of 800 and 900 Hz, lower 
relative running speeds of 13 
and 3.6 BL/s were recorded, 
respectively (movie S3).

Locomotion analysis
We observed four main pos-
tures during the operation of the 
robot: aerial, front-touching, 
back- touching, and both-touching. 
In each posture, the robot’s body 
can be either expanding or 
contracting depending on the 
applied driving signal at that 
instant. Hence, there are eight 
possible configurations, as shown 
in Fig. 2 (A to D), where gray 
dashed lines indicate the pre-
vious shapes and red solid lines 
are the immediate current shapes. 
In this illustration, G, Ff, and 
Fa are the gravitational force, 
ground reaction force at the 

front leg, and ground reaction force at the end of the abdomen, 
respectively. The shape of the robot changes periodically based on 
the PVDF actuation force to excite elastic oscillations for the 
curved unimorph structure. The directions of the ground reaction 
force at the front leg and abdomen (blue arrows in the figure) will 
change depending on the posture and shape changes of the robot. The 
front leg construction of the robot is important because it produces 

Fig. 2. Locomotion gait analysis. (A to D) Optical photos from the high-speed camera (top), corresponding contracted configurations 
(middle), and corresponding expanded configurations (bottom) of a prototype robot showing different gaits in the cross-sectional 
views. (E) Simplified dynamic model based on two rigid bodies joined by a pin joint (both-touching posture as an example) with 
a torsional spring-damper system. (F) Duty cycles in different gaits of both experimental and simulation results for a 25-mm-long 
prototype robot driven at its fastest speed at resonance of 200 Hz. (G) Relationships between the vibration amplitude and moving 
speed as well as aerial duty cycle for driving frequencies of 170, 190, 200, 210, and 230 Hz. Error bars indicate mean ± 1 SD.
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anisotropic lateral forces to generate forward locomotion. The most 
effective configuration for forward motion, a contracting touchdown 
of the front leg (contraction of the front-touching posture), greatly 
increased the lateral component of the ground reaction force and 
the vertical component for taking off. The abdomen functions to 
keep the balance of the dynamic system by adjusting the pitch of 
the body when it taps the ground, preventing the robot from flip-
ping over backward. The details for qualitative introduction of 
the locomotion mechanism are discussed in section S2 and figs. 
S3 and S4.

Using a high-speed camera, we found that the first vibrational 
mode is easily excited and dominates the shape change, whereas 
higher-order modes can be neglected. A dynamic mass-spring 
model consisting of two rigid bodies (m1, m2) joined by a pin joint 
was analyzed in MATLAB to model the curved robot, as shown in 
Fig. 2E (both-touching posture as an example). A torsional spring- 
damper (k-d) at the pin joint is excited by a sinusoidally varying 
torque source (m) to represent the mechanical motions of the PVDF 
layer under the AC excitation. We modeled the ground contact at 
the front and back as a vertical spring-damper (k-d) with a normal 
force in the vertical direction (Fn) and a friction force in the lateral 
direction (Ff). The values of material parameters used in the model 

and simulation can be found in table S1, and the simulation details 
are discussed in section S3 and fig. S5.

A 25-mm-long prototype robot was driven on a paper substrate 
and recorded under different driving parameters. The fastest 
running speed was 8.7 cm/s (movie S1) under 200 V at 200 Hz. The 
running speed reduced under the same applied voltage of 200 V at 
varying frequencies of 170, 190, 210, and 230 Hz, respectively (movie 
S4). To further study the operation of the robot, we statistically 
characterized the duty cycles for the eight configurations (Fig. 2, A to D). 
We plotted the results in Fig. 2F (shaded columns) for the trial with 
the fastest speed at 8.7 cm/s at 200 Hz (see fig. S6 for other frequen-
cies with slower speeds). We also compared these results with the 
simulation data from the mass-spring model running at 200 Hz 
(Fig. 2F, hatched columns, and movie S5). We observed that a 
large percentage of aerial duty cycles were required to generate fast 
running speeds for the robot. For example, in this trial, the aerial 
cycles for the contracted and expanded configurations are about 
36 and 43%, respectively, whereas all the other configurations have 
the duty cycles of less than 10%. In principle, large-amplitude os-
cillation driven at the resonant frequency should result in large 
deformation and greater forces to induce longer aerial duty cycles 
and higher foot velocities for faster speeds. Figure 2G compares the 

Fig. 3. Geometric parameter optimization and performance characterization. (A) Side view of a robot with the definitions of geometric parameters. (B) Experimental 
results (gray dots) for normalized running speeds from a 10-mm-long robot with different geometric combinations used to plot a color map as a function of relative leg position 
(/L) and relative leg angle (/). The color map is interpolated by the thin-plate spline interpolation scheme for surface fitting. Original data can be found in table S2. (C) Relative 
running speeds of robots versus the driving frequencies for robots with lengths of 10, 15, 20, 25, and 30 mm. Shaded bands represent 90% confidence limits. (D) Relative 
running speeds (under the resonant frequency) of robots versus the driving voltages for robots with lengths of 10, 15, 20, 25, and 30 mm. Error bars indicate mean ± 1 SD.
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average vibration amplitudes (measured 
when the robot is in the aerial posture) 
under the driving frequencies of 170, 190, 
200, 210, and 230 Hz and their corre-
sponding running speeds and aerial duty 
cycles. As expected, the large vibration 
amplitude due to the structural resonance 
resulted in faster running speed as well as 
longer aerial duty cycles (the combina-
tion of contracted and expended configu-
rations). Again, we note that although 
the morphology and motion of our ro-
bot do not mimic any specific animal, 
small runners, such as cockroaches (41) 
and desert ants (44), also use aerial phases 
to attain their fastest speeds.

Parameter optimization 
and performance characterization
Geometric parameters play an important 
role in the performance of the robot. 
To simplify the structure and identify 
appropriate configurations, we defined 
the geometric parameters as shown 
schematically in Fig. 3A, where L is the 
body length of a robot,  is the body 
curvature, l is the length of the front 
leg,  is the distance between the front 
leg and the head, and  is the contact 
angle between the front leg and the ground. Using a prototype 
robot of 10 mm (length) by 15 mm (width) by 3 mm (height) as an 
example, we first selected 25 combinations (Fig. 3B, gray dots) of 
the above geometric parameters to fabricate prototypes and con-
ducted experiments to plot the normalized running speed map as a 
function of relative leg position (/L) and relative leg angle (/) in 
Fig. 3B. The color bar shows the magnitudes and directions of the 
normalized speed of the robot, with the red color areas represent-
ing the fastest running speed. We found that the values of /L and 
/ near 0.1 and 0.4, respectively, resulted in robots with the fastest 
running speeds.

We then fabricated prototype robots with different lengths rang-
ing from 10 to 30 mm at an interval of 5 mm using the map of /L 
and / of 0.1 and 0.4 for guidance. The resonant frequencies of 
robots with different lengths were approximately evaluated both 
analytically and experimentally and discussed in section S4 and 
figs. S7 and S8. In general, robots with smaller lengths have higher 
resonant frequencies and faster relative speeds. The relationships 
between driving frequency and relative speed for robots with 
lengths of 10, 15, 20, 25, and 30 mm are shown in Fig. 3C driven 
by a peak-to-peak voltage of 200 V to achieve measured maximum 
speeds of 20 BL/s (20 cm/s), 8 BL/s (12 cm/s), 4.05 BL/s (8.1 cm/s), 
2.4 BL/s (6 cm/s), and 1.33 BL/s (4 cm/s), respectively. In Fig. 3D, 
the amplitude of the driving voltage versus the relative speed of 
robots with different lengths was measured near their resonant 
frequencies. As expected, larger driving voltages result in faster 
running speeds. For a 10-mm-long robot, as shown in fig. S9 (A and B), 
we observed noticeable motion even under an AC drive voltage 
as low as 8 V peak to peak (movie S6), which is a relatively low 
voltage requirement among insect-scale piezoelectric actuators 

(45). Using a prototype 30-mm-long robot operating at 140 Hz as 
an example, we measured the voltage and current simultaneously 
using a data acquisition system for five cycles (fig. S10). The power 
consumption could be estimated as 0.343 mW by the integral of the 
voltage-current measurement results. When the robot operated 
near its resonant frequency, the cost of transport (COT) of the 
robot was about 14 (section S5), the lowest reported COT for robots 
and insects below 1 g (fig. S11) (46–59) with a relative speed of 
4 BL/s under a power of 0.343 mW.

The comparison of relative moving speed
The relative moving speed is very important for animals because 
they often depend on fast locomotion to hunt for food, escape from 
predators, and/or compete for mating partners (60, 61). Researchers 
have shown that animals with high relative speeds are less likely to be 
caught and that relative speed may be more “ecologically relevant” 
than the absolute speed in various performance characterizations 
(61, 62). Figure 4 shows a comparison of relative running speeds 
with respect to body weights including our robots (red stars) and 
living animals, such as terrestrial mammals (purple) and running 
arthropods (orange), along with reported artificial soft robots or 
actuators (blue). For mammals, the trend in the elliptical and pur-
ple color shaded area indicates that the relative speed decreases as 
the body mass increases due to the scaling of mechanical constraints 
on the locomotive performance (61). However, small-size arthropods 
outperform larger animals in terms of their relative moving speeds. 
For example, a small mite, Paratarsotomus macropalpis, is now the world’s 
fastest known running animal, with a relative speed at several hun-
dred body lengths per second (39). An opposite trend exists for soft 
robots, as shown in the elliptical and blue color shaded area, which 

Fig. 4. Relative running speeds of some mammals, arthropods, soft robots, and actuators versus body mass. 
For animals including both mammals (purple) and arthropods (orange), relative speeds show a strong negative scal-
ing law with respect to the body mass, showing that relative running speeds increase as body masses decrease. 
However, for soft robots, the relationship appears to be the opposite, where the relative running speeds decrease as 
the body mass decrease. The performances of the prototype robots (red stars with body lengths from 30 to 10 mm) 
follow a scaling law similar to that of living animals: Higher relative running speed was attained as the body mass 
decreased, with the fastest measured running speed at 20 BL/s among reported insect-scale robots and actuators 
(blue). For data, see table S3.
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suggests that the relative speed increases 
as the body mass increases (19) except 
for recent robots driven by an external 
magnetic force (26–28). The robots pre-
sented in this work (five red stars with 
the body lengths from 30 to 10 mm; Fig. 4) 
have sizes similar to those of arthropods 
with a similar performance trend where 
the relative speed increases as the body 
mass decreases. As discussed in section 
S4, the relative running speed of our pro-
totype robots had a positive correlation 
with the resonant frequency, so our 
smaller robots operated at higher reso-
nant frequencies to achieve faster relative 
running speeds. The working efficiency 
of our prototype robot is high because 
the simple structure contains no redun-
dant energy-consuming components. 
Although some soft robots driven by 
magnetic fields, humidity, or heat or 
light sources can have fast instantaneous 
running speeds, slow responses and a bulky 
setup to generate the external power, 
such as the magnetic field, are among 
the limitations.

Robustness
Robustness is essential for the survival 
of animals displaying both fail-safe and 
fault-tolerant behavior. For example, a 
cockroach can withstand a load 900 times 
its own body weight without injury be-
cause of its soft and shape-changing 
exoskeleton (37). The robot presented 
here also has exceptional robustness characteristics resulting from 
the assembly of soft materials with simple structures. Experimen-
tally, the robustness of the prototype soft robot was demonstrated 
by applying a 100-g mass (1500 times its own body weight) with 
little change in its speed after the mass was removed, as shown in 
movie S7. Moreover, the soft robot could continue to function (one-
half of the original speed) after being stepped on by an adult human 
(59.5 kg), a load about 1 million times its own body weight (Fig. 5, A to C, 
and movie S7). We systematically tested the robust performance of 
a 3 cm–by–1.5 cm prototype robot (fig. S12). The prototype robot 
was driven with the same condition (200 V and 140 Hz) before and 
after the applied load. In fig. S12, we report the speeds of a proto-
type robot after applying and removing different loads with magni-
tudes ranging from 10 to 59,500 g. We define the compressibility as 
the ratio of the vertical height change to the original height of the 
robot. We observed that if the applied load is below 100 g, then the 
robot can recover back to the original shape and maintain greater 
than 88% of its original speed. As the applied load increased, the 
moving speed decreased. When the applied load was above 10 kg, 
the compressibility of the robot increased and saturated at about 
0.95, while the speed reduced and saturated at near 50% of the orig-
inal speed. Even under heavy applied loads that flatten the robot 
initially, the robot could still partially recover after the removal of 
the applied load.

Climbing and carrying loads
Animals and robots often need to do work such as climbing and 
carrying loads. The slope climbing capability of the robot is demon-
strated in movie S7, in which the robot reached 7 BL/s while climb-
ing a slope with an angle of 7.5° (Fig. 5D) and 1 BL/s while climbing 
a slope with an angle of 15.6° (Fig. 5E). Our soft prototype robot 
could also carry loads equal to the weight of a peanut (0.406 g) 
(Fig. 5, F and G). The robot was able to move smoothly while carry-
ing a load that is six times its own weight at about one-sixth of the 
original speed (movie S7).

Speed enhancement by galloping-like gait
To further increase the running speed, we added and attached a 
back leg to a 3 cm–by–5 cm prototype robot to emulate galloping- 
like gaits (movie S8). Galloping is used by some rapid running 
mammals, where back bending increases stride length and allows 
the recovery of stored elastic energy (63). Specifically shown in (i) to 
(xi) of Fig. 6A, successive stages in a galloping stride and their cor-
responding schematic diagrams illustrate the operation of the 
galloping gait. With the more effective galloping-like gait mecha-
nism, a two-legged robot achieved a running speed about three 
times that of a one-legged 3 cm–by–1.5 cm robot under similar driv-
ing conditions, as shown in movie S9. To investigate quantitative 
details, we show (Fig. 6B) the statistical duty cycles of various postures 

Fig. 5. Weight-bearing, slope-climbing, and load-carrying capabilities. (A to C) Soft robot can continue to func-
tion (one-half of the original speed) after being stepped on by an adult human (59.5 kg), a load about 1 million times 
its own body weight. Scale bars, 3 cm. A robot climbs a slope (D) of 7.5° with a relative speed of 7 BL/s and a slope 
(E) of 15.6° with a relative speed of 1 BL/s. Scale bars, 1 cm. (F and G) A robot (0.064 g) carries a peanut (0.406 g), which 
is six times its own body weight, to show the load-carrying capability. The speed with the peanut on top is about one-six 
of the original speed without the peanut. Scale bars, 1 cm.
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between the one-legged and two-
legged robots. We found that the 
prototype two-legged robot had 
longer aerial duty cycles (75% versus 
51%) to boost the running speed.

CONCLUSION
By generalizing several solutions 
found in animals, we introduce a 
fast and ultrarobust insect-scale soft 
robot for potential applications in 
environmental exploration, struc-
tural inspection, information re-
connaissance, and disaster relief. 
Our robot uses the large vibration 
amplitude and a bouncing gait 
mechanism to generate a wavelike 
locomotion near its resonant fre-
quency. Our prototype robot achieved 
a maximum relative speed of 20 BL/s, 
which is comparable with those of 
fast-moving arthropods and is faster 
than those of currently reported 
insect-scale robots. Furthermore, 
the robot can function with a low 
voltage supply of only 8 V, which 
demonstrates promise for the further integration of onboard cir-
cuits for future untethered operations. The scaling trend from the 
tested robots shows that miniaturization with higher resonant fre-
quencies could further increase the relative speeds, but precision 
fabrication, the requirement of powering wires, and untethered op-
erations could be the key challenges in pursuing smaller-scale ro-
bots. The working mechanism and structure of the robots presented 
here also show exceptional robustness in weight-bearing, slope-climbing, 
and load-carrying performances. The control of the robot’s move-
ment direction is another important next step. One simple way to 
turn would be to assemble two separated electrical domains, as shown 
in figs. S13 and S14 and movie S10. Driving signals (frequency, am-
plitude, or phase) of the two domains are controlled independently 
so that each of them allows different ground reaction forces to turn 
in the desired direction. By assembling domains with different sizes 
or shapes, a robot could add further maneuverability. Hence, we 
hope the proposed insect-scale robot paves a way to pursue fast and 
robust robots for practical applications.

MATERIALS AND METHODS
The prototype robot consists of a curved unimorph structure and a 
folded leg assembled with a simple process. The unimorph struc-
ture uses an 18-m-thick PVDF film (PolyK Technologies, LLC) on 
top as the active layer and a 50-m-thick PET tape (Gizmo Dorks) 
at the bottom as the inactive layer (25-m-thick adhesive silicone 
and 25-m-thick PET). The fabrication and assembly processes of a 
prototype robot are shown in fig. S15. To pattern electrodes on both 
sides of a PVDF film, we used a 2-mm-thick acrylic board (Soto Laser 
Cutting) patterned by laser as a shadow mask. The electrode con-
sists of 10-nm-thick Pd and 40-nm-thick Au. The PVDF film was 
precisely cut with margins along the patterned electrodes by a pro-

grammable paper-cutting machine (Silhouette America). Then, the 
PET tape with the same dimensions as the PVDF film was cut the same 
way. Two wires (Aluminium/Silicon Alloy, Custom Chip Connec-
tions) with a diameter of 25.4 m were attached by aluminum tape 
on each side of the electrodes, serving as connections between the 
robot and external power supply. Next, the PVDF film and the PET 
tape were laminated together on top of a three-dimensional printed 
curved mold to form a curved (45°) unimorph structure. Last, a 
PET tape was adhered to the bottom layer of the robot to serve as 
the front leg.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/32/eaax1594/DC1
Section S1. Actuation mechanism of PVDF film and curved unimorph structure
Section S2. Qualitative analysis of the locomotion mechanism
Section S3. Simplified dynamic model for the robot’s locomotion
Section S4. Resonant frequency evaluation
Section S5. COT calculation
Fig. S1. Actuating mechanism of PVDF film and curved unimorph structure.
Fig. S2. Locomotion performances inside a tube.
Fig. S3. Conceptual image of the free body diagram: A robot at a both-touching posture.
Fig. S4. Velocity and force analysis for front-leg touchdown. 
Fig. S5. System configurations of the simplified dynamic model.
Fig. S6. Gait statistics near fast speed.
Fig. S7. The relationship between robot length and resonant frequency for FEM simulation 
results under different boundary conditions compared with that of experimental results.
Fig. S8. Dynamic tests when the robot is clamped at one end.
Fig. S9. Locomotion of a robot under low driving voltage.
Fig. S10. Measurement of electrical parameters.
Fig. S11. COT of select robots (circles) and insects (squares) plotted against their body masses.
Fig. S12. Performance of a 3 cm–by–1.5 cm prototype robot after applying and removing 
different loads.
Fig. S13. Fabrication processes of a prototype robot with the turning ability.
Fig. S14. Direction control.
Fig. S15. Main fabrication and assembly processes of a prototype robot.
Table S1. Material parameters.

Fig. 6. Galloping-like gait with the design of a two-legged robot. (A) Series of optical images (top) from the high-speed 
camera to show the galloping strides and their corresponding schematic diagrams (bottom). (B) Comparison of one-legged 
and two-legged robots in duty cycles in different operation postures. Error bars indicate mean ± 1 SD. See movie S9.
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Table S2. Data of 25 combinations of /L and / as well as their normalized speeds.
Table S3. Data of relative speed versus mass of some animals as well as soft robots and 
actuators.
Movie S1. Locomotion observation of prototype robot running at the fastest speed.
Movie S2. Posture and position observation of prototype robot.
Movie S3. Locomotion inside tube with different driving frequencies.
Movie S4. Locomotion observation of prototype robot running at slower speeds.
Movie S5. Locomotion of the simplified dynamic model in MATLAB simulation.
Movie S6. Locomotion of prototype robot under low driving voltage.
Movie S7. Robustness, climbing, and carrying loads.
Movie S8. Galloping-like gaits of two-legged robot.
Movie S9. Comparison of locomotion of one-legged robot and two-legged robot.
Movie S10. Robot with two separate electrical domains for turning.
References (64–87)

REFERENCES AND NOTES
 1. M. Calisti, G. Picardi, C. Laschi, Fundamentals of soft robot locomotion. J. R. Soc. Interface 

14, 20170101 (2017).
 2. D. Rus, M. T. Tolley, Design, fabrication and control of soft robots. Nature 521, 467–475 

(2015).
 3. S. I. Rich, R. J. Wood, C. Majidi, Untethered soft robotics. Nat. Electron. 1, 102–112  

(2018).
 4. S. Kim, C. Laschi, B. Trimmer, Soft robotics: A bioinspired evolution in robotics.  

Trends Biotechnol. 31, 287–294 (2013).
 5. J. Aguilar, T. Zhang, F. Qian, M. Kingsbury, B. Mclnroe, N. Mazouchova, C. Li, R. Maladen, 

C. Gong, M. Travers, R. L. Hatton, H. Choset, P. B. Umbanhowar, D. I. Goldman, A review 
on locomotion robophysics: The study of movement at the intersection of robotics, soft 
matter and dynamical systems. Rep. Prog. Phys. 79, 110001 (2016).

 6. Y. O. Aydin, J. M. Rieser, C. M. Hubicki, W. Savoie, D. I. Goldman, Physics approaches to 
natural locomotion: Every robot is an experiment, in Robotic Systems and Autonomous 
Platforms (Woodhead Publishing, 2019), pp. 109–127.

 7. A. Rafsanjani, Y. Zhang, B. Liu, S. M. Rubinstein, K. Bertoldi, Kirigami skins make a simple 
soft actuator crawl. Sci. Robot. 3, eaar7555 (2018).

 8. W. Wang, J.-Y. Lee, H. Rodrigue, S.-H. Song, W.-S. Chu, S.-H. Ahn, Locomotion 
of inchworm-inspired robot made of smart soft composite (SSC). Bioinspir. Biomim. 9, 
046006 (2014).

 9. K. Jung, J. C. Koo, J.-d. Nam, Y. K. Lee, H. R. Choi, Artificial annelid robot driven by soft 
actuators. Bioinspir. Biomim. 2, S42–S49 (2007).

 10. S. A. Rios, A. J. Fleming, Y. K. Yong, Miniature resonant ambulatory robot. IEEE Robot. 
Autom. Lett. 2, 337–343 (2017).

 11. B. Kim, M. G. Lee, Y. P. Lee, Y. Kim, G. Lee, An earthworm-like micro robot using shape 
memory alloy actuator. Sens. Actuators A Phys. 125, 429–437 (2006).

 12. D. W. Haldane, M. M. Plecnik, J. K. Yim, R. S. Fearing, Robotic vertical jumping agility via 
series-elastic power modulation. Sci. Robot. 1, eaag2048 (2016).

 13. N. Kagawa, H. Kazerooni, Biomimetic small walking machine, in Proceedings of the 2001 
IEEE/ IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, 
Italy, 8 to 12 July 2001 (IEEE, 2001).

 14. K. L. Hoffman, R. J. Wood, Turning gaits and optimal undulatory gaits for a modular 
centipede-inspired millirobot, in Proceedings of the 4th IEEE RAS/EMBS International 
Conference on Biomedical Robotics and Biomechatronics, Roma, Italy, 24 to 27 June 2012 
(IEEE, 2012).

 15. P. Birkmeyer, K. Peterson, R. S. Fearing, DASH: A dynamic 16g hexapedal robot, in 
Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 
St. Louis, MO, 11 to 15 October 2009 (IEEE, 2009).

 16. U. Saranli, M. Buehler, D. E. Koditschek, RHex: A simple and highly mobile hexapod robot. 
Int. J. Rob. Res. 20, 616–631 (2016).

 17. S. Kim, J. E. Clark, M. R. Cutkosky, iSprawl: Design and tuning for high-speed autonomous 
open-loop running. Int. J. Rob. Res. 25, 903–912 (2006).

 18. A. T. Baisch, O. Ozcan, B. Goldberg, D. Ithier, R. J. Wood, High speed locomotion 
for a quadrupedal microrobot. Int. J. Rob. Res. 33, 1063–1082 (2014).

 19. B. Shin, J. Ha, M. Lee, K. Park, G. H. Park, T. H. Choi, K.-J. Cho, H.-Y. Kim, Hygrobot: 
A self-locomotive ratcheted actuator powered by environmental humidity. Sci. Robot. 3, 
eaar2629 (2018).

 20. S.-W. Lee, J. H. Prosser, P. K. Purohit, D. Lee, Bioinspired hygromorphic actuator exhibiting 
controlled locomotion. ACS Macro Lett. 2, 960–965 (2013).

 21. Y. Ma, Y. Zhang, B. Wu, W. Sun, Z. Li, J. Sun, Polyelectrolyte multilayer films for building 
energetic walking devices. Angew. Chem. Int. Ed. 123, 6378–6381 (2011).

 22. E. Wang, M. S. Desai, S.-W. Lee, Light-controlled graphene-elastin composite hydrogel 
actuators. Nano Lett. 13, 2826–2830 (2013).

 23. M. Rogóż, H. Zeng, C. Xuan, D. S. Wiersma, P. Wasylczyk, Light-driven soft robot mimics 
caterpillar locomotion in natural scale. Adv. Optic. Mater. 4, 1689–1694 (2016).

 24. S.-J. Park, M. Gazzola, K. S. Park, S. Park, V. Di Santo, E. L. Blevins, J. U. Lind, P. H. Campbell, 
S. Dauth, A. K. Capulli, F. S. Pasqualini, S. Ahn, A. Cho, H. Yuan, B. M. Maoz, R. Vijaykumar, 
J.-W. Choi, K. Deisseroth, G. V. Lauder, L. Mahadevan, K. K. Parker, Phototactic guidance 
of a tissue-engineered soft-robotic ray. Science 353, 158–162 (2016).

 25. N. Cheng, G. Ishigami, S. Hawthorne, H. Chen, M. Hansen, M. Telleria, R. Playter, 
K. Iagnemma, Design and analysis of a soft mobile robot composed of multiple thermally 
activated joints driven by a single actuator, in Proceedings of the 2010 IEEE International 
Conference on Robotics and Automation, Anchorage, AK, 3 to 8 May 2010 (IEEE,  
2010).

 26. W. Hu, G. Z. Lum, M. Mastrangeli, M. Sitti, Small-scale soft-bodied robot with multimodal 
locomotion. Nature 554, 81–85 (2018).

 27. R. St. Pierre, W. Gosrich, S. Bergbreiter, A 3D-printed 1mg legged microrobot running at 
15 body lengths per second, paper presented at Solid-State Sensors, Actuators, and 
Microsystems Workshop, Hilton Head, SC, 3 to 7 June 2018.

 28. D. Vogtmann, R. S. Pierre, S. Bergbreiter, A 25mg magnetically actuated microrobot 
walking at > 5 body lengths/sec, Proceedings of the 2018 IEEE International Conference on 
Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, 22 to 26 January 2017 (IEEE, 
2017).

 29. B. Goldberg, R. Zufferey, N. Doshi, E. F. Helbling, G. Whittredge, M. Kovac, R. J. Wood, 
Power and control autonomy for high-speed locomotion with an insect-scale legged 
robot. IEEE Trans. Robot. Autom. 3, 987–993 (2018).

 30. N. Lobontiu, M. Goldfarb, E. Garcia, A piezoelectric-driven inchworm locomotion device. 
Mech. Mach. Theory 36, 425–443 (2001).

 31. H. H. Hariri, L. A. Prasetya, S. Foong, G. S. Soh, K. N. Otto, K. L. Wood, A tether-less legged 
piezoelectric miniature robot using bounding gait locomotion for bidirectional motion, 
in Proceedings of the 2016 IEEE International Conference on Robotics and Automation, 
Stockholm, Sweden, 16 to 21 May 2016 (IEEE, 2016).

 32. Y. Wu, K. Y. Ho, K. Kariya, R. Xu, W. Cai, J. Zhong, Y. Ma, M. Zhang, X. Wang, L. Lin, 
Pre-curved PVDF/PI unimorph structures for biomimic soft crawling actuators, 
Proceedings of the 2018 IEEE International Conference on Micro Electro Mechanical Systems 
(MEMS), Belfast, UK, 21 to 25 January 2018 (IEEE, 2018).

 33. P. Xiao, N. Yi, T. Zhang, Y. Huang, H. Chang, Y. Yang, Y. Zhou, Y. Chen, Construction 
of a fish-like robot based on high performance graphene/PVDF bimorph actuation 
materials. Adv. Sci. 3, 1500438 (2016).

 34. L. Hines, K. Petersen, G. Z. Lum, M. Sitti, Soft actuators for small-scale robotics. Adv. Mater. 
29, 1603483 (2017).

 35. G. Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full, N. Jacobstein, 
V. Kumar, M. McNutt, R. Merrifield, B. J. Nelson, B. Scassellati, M. Taddeo, R. Taylor, 
M. Veloso, Z. L. Wang, R. Wood, The grand challenges of Science Robotics. Sci. Robot. 3, 
eaar7650 (2018).

 36. M. H. Dickinson, C. T. Farley, R. J. Full, M. A. R. Koehl, R. Kram, S. Lehman, How animals 
move: An integrative view. Science 288, 100–106 (2000).

 37. K. Jayaram, R. J. Full, Cockroaches traverse crevices, crawl rapidly in confined spaces, 
and inspire a soft, legged robot. Proc. Natl. Acad. Sci. U.S.A. 113, E950–E957 (2016).

 38. R. J. Bomphrey, T. Nakata, N. Phillips, S. M. Walker, Smart wing rotation and trailing-edge 
vortices enable high frequency mosquito flight. Nature 544, 92–95 (2017).

 39. S. Rubin, M. H.-Y. Young, J. C. Wright, D. L. Whitaker, A. N. Ahn, Exceptional running 
and turning performance in a mite. J. Exp. Biol. 219, 676–685 (2016).

 40. G. C. Wu, J. C. Wright, D. L. Whitaker, A. N. Ahn, Kinematic evidence for superfast 
locomotory muscle in two species of teneriffiid mites. J. Exp. Biol. 213, 2551–2556  
(2010).

 41. R. J. Full, M. S. Tu, Mechanics of a rapid running insect: Two-, four- and six-legged 
locomotion. J. Exp. Biol. 156, 215–231 (1991).

 42. B. K. Ahlborn, R. W. Blake, W. Megill, Frequency tuning in animal locomotion.  
Fortschr. Zool. 109, 43–53 (2006).

 43. M. H. Dickinson, M. S. Tu, The function of dipteran flight muscle. Comp. Biochem. Physiol. 
116, 223–238 (1997).

 44. V. Wahl, S. E. Pfeffer, M. Wittlinger, Walking and running in the desert ant Cataglyphis 
fortis. J. Comp. Physiol. A 201, 645–656 (2015).

 45. G.-Y. Gu, J. Zhu, L.-M. Zhu, X. Zhu, A survey on dielectric elastomer actuators for soft 
robots. Bioinspir. Biomim. 12, 011003 (2017).

 46. R. St. Pierre, S. Bergbreiter, Toward autonomy in sub-gram terrestrial robots.  
Annu. Rev. Control. Robot. Auton. Syst. 2, 231–252 (2019).

 47. E. Y. Erdem, Y.-M. Chen, M. Mohebbi, J. W. Suh, G. T. A. Kovacs, R. B. Darling, 
K. F. Böhringer, Thermally actuated omnidirectional walking microrobot. 
J. Microelectromech. Syst. 19, 433–442 (2010).

 48. T. Ebefors, J. U. Mattsson, E. Kälvesten, G. Stemme, A walking silicon micro-robot, in 
Proceedings of the 10th International Conference on Solid-State Sensors and Actuators: 
Transducers (IEEE, 1999).

 49. W. A. Churaman, L. J. Currano, C. J. Morris, J. E. Rajkowski, S. Bergbreiter, The first launch 
of an autonomous thrust-driven microrobot using nanoporous energetic silicon. 
J. Microelectromech. Syst. 21, 198–205 (2012).

 at AAAS on February 24, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

www.ScienceRobotics.org     31 July 2019     Vol 4  Issue 32 aax1594

http://www.ScienceRobotics.org
http://www.ScienceRobotics.org


R E S E A R C H  A R T I C L E

92
Wu et al., Sci. Robot. 4, eaax1594 (2019)     31 July 2019

S C I E N C E  R O B O T I C S  |  R E S E A R C H  A R T I C L E

9 of 9

 50. M. Qi, Y. Zhu, Z. Liu, X. Zhang, X. Yan, L. Lin, A fast-moving electrostatic crawling insect, in 
Proceedings of the 2018 IEEE International Conference on Micro Electro Mechanical Systems 
(MEMS), Las Vegas, NV, 22 to 26 January 2017 (IEEE, 2017).

 51. S. Hollar, A. Flynn, C. Bellew, K. Pister, Solar powered 10 mg silicon robot, in Sixteenth 
Annual International Conference on Micro Electro Mechanical Systems (IEEE, 2003).

 52. J. T. Greenspun, K. Pister, First leaps of an electrostatic inchwormmotor-driven jumping 
microrobot, in Hilton Head Solid-State Sensors, Actuators, and Microsystems Workshop, 
Hilton Head Island, SC, 3 to 7 June 2018.

 53. D. Berrigan, J. R. Lighton, Bioenergetic and kinematic consequences of limblessness 
in larval Diptera. J. Exp. Biol. 179, 245–259 (1993).

 54. T. F. Jensen, I. Holm-Jensen, Energetic cost of running in workers of three ant species, 
Formica fusca L., Formica rufa L., and Camponotus herculeanus L. (Hymenoptera, 
Formicidae). J. Comp. Physiol. 137, 151–156 (1980).

 55. J. R. B. Lighton, G. A. Bartholomew, D. H. Feener, Energetics of locomotion and load carriage 
and a model of the energy cost of foraging in the leaf-cutting Ant Atta colombica Guer. 
Physiol. Zool. 60, 524–537 (1987).

 56. W. Driesen, A. Rida, J. Breguet, R. Clavel, Friction based locomotion module for mobile 
MEMS robots, in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IEEE, 2007).

 57. L. Reinhardt, R. Blickhan, Level locomotion in wood ants: Evidence for grounded running. 
J. Exp. Biol. 217, 2358–2370 (2014).

 58. D. S. Contreras, D. S. Drew, K. S. J. Pister, First steps of a millimeter-scale walking silicon 
robot, in IEEE 19th International Conference on Solid-State Sensors, Actuators and 
Microsystems (Transducers’17) (IEEE, 2017).

 59. J. H. Fewell, J. F. Harrison, J. R. B. Lighton, M. D. Breed, Foraging energetics of the ant, 
Paraponera clavata. Oecologia 105, 419–427 (1996).

 60. M. R. Hirt, W. Jetz, B. C. Rall, U. Brose, A general scaling law reveals why the largest 
animals are not the fastest. Nat. Ecol. Evol. 1, 1116–1122 (2017).

 61. J. Iriarte-Díaz, Differential scaling of locomotor performance in small and large terrestrial 
mammals. J. Exp. Biol. 205, 2897–2908 (2002).

 62. R. Van Damme, T. J. M. Van Dooren, Absolute versus per unit body length speed of prey 
as an estimator of vulnerability to predation. Anim. Behav. 57, 347–352 (1999).

 63. R. M. Alexander, N. J. Dimery, R. F. Ker, Elastic structures in the back and their role 
in galloping in some mammals. J. Zool. 207, 467–482 (1985).

 64. R. M. Alexander, Allometry of the limbs of antelopes (Bovidae). J. Zool. 183, 125–146 (1977).
 65. R. M. Alexander, V. A. Langman, A. S. Jayes, Fast locomotion of some African ungulates. 

J. Zool. 183, 291–300 (1977).
 66. F. D. Duncan, R. M. Crewe, A comparison of the energetics of foraging of three species 

of Leptogenys (Hymenoptera, Formicidae). Physiol. Entomol. 18, 372–378 (1993).
 67. G. A. Bartholomew, J. R. B. Lighton, G. N. Louw, Energetics of locomotion and patterns 

of respiration in tenebrionid beetles from the Namib Desert. J. Comp. Physiol. B 155, 
155–162 (1985).

 68. A. H. Hurlbert, F. Ballantyne, S. Powell, Shaking a leg and hot to trot: The effects 
of body size and temperature on running speed in ants. Ecol. Entomol. 33, 144–154 
(2008).

 69. M. Wittlinger, R. Wehner, H. Wolf, The desert ant odometer: A stride integrator that 
accounts for stride length and walking speed. J. Exp. Biol. 210, 198–207 (2007).

 70. C. C. Amaya, P. D. Klawinski, D. R. Formanowicz Jr., The effects of leg autotomy 
on running speed and foraging ability in two species of wolf spider, (Lycosidae).  
Am. Midl. Nat. 145, 201–205 (2001).

 71. S. Kamoun, S. A. Hogenhout, Flightlessness and rapid terrestrial locomotion in tiger 
beetles of the Cicindela L. Subgenus Rivacindela van Nidek from saline habitats 
of Australia (Coleoptera: Cicindelidae). Coleopts. Bull. 50, 221–230 (1996).

 72. S. Maeda, Y. Hara, T. Sakai, R. Yoshida, S. Hashimoto, Self-walking gel. Adv. Mater. 19, 
3480–3484 (2007).

 73. D. Morales, E. Palleau, M. D. Dickey, O. D. Velev, Electro-actuated hydrogel walkers 
with dual responsive legs. Soft Matter 10, 1337–1348 (2014).

 74. N. Tomita, K. Takagi, K. Asaka, Development of a quadruped soft robot with fully IPMC 
body, in Proceedings of the 2011 SICE Annual Conference, Tokyo, Japan, 13 to 18 
September 2011 (SICE, 2011).

 75. H. Lu, M. Zhang, Y. Yang, Q. Huang, T. Fukuda, Z. Wang, Y. Shen, A bioinspired 
multilegged soft millirobot that functions in both dry and wet conditions. Nat. Commun. 
9, 3944–3950 (2018).

 76. S. W. Kwok, S. A. Morin, B. Mosadegh, J.-H. So, R. F. Shepherd, R. V. Martinez, B. Smith, 
F. C. Simeone, A. A. Stokes, G. M. Whitesides, Magnetic assembly of soft robots with hard 
components. Adv. Funct. Mater. 24, 2180–2187 (2014).

 77. L. Xu, H.-Q. Chen, J. Zou, W.-T. Dong, G.-Y. Gu, L.-M. Zhu, X.-Y. Zhu, Bio-inspired annelid 
robot: A dielectric elastomer actuated soft robot. Bioinspir. Biomim. 12, 025003 (2017).

 78. C. T. Nguyen, H. Phung, T. D. Nguyen, H. Jung, H. R. Choi, Multiple-degrees-of-freedom 
dielectric elastomer actuators for soft printable hexapod robot. Sens. Actuators A Phys. 
267, 505–516 (2017).

 79. T. Li, G. Li, Y. Liang, T. Cheng, J. Dai, X. Yang, B. Liu, Z. Zeng, Z. Huang, Y. Luo, T. Xie, 
W. Yang, Fast-moving soft electronic fish. Sci. Adv. 3, e1602045 (2017).

 80. M. Duduta, D. R. Clarke, R. J. Wood, A high speed soft robot based on dielectric elastomer 
actuators, in Proceedings of the 2017 IEEE International Conference on Robotics and 
Automation (IEEE, 2017), Singapore, 29 May to 3 June 2017.

 81. A. M. Hoover, E. Steltz, R. S. Fearing, RoACH: An autonomous 2.4g crawling hexapod 
robot, in Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IEEE, 2008), Nice, France, 22 to 26 September 2008.

 82. A. T. Baisch, P. S. Sreetharan, R. J. Wood, Biologically-inspired locomotion of a 2g hexapod 
robot, in Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots 
and Systems (IEEE, 2010), Taipei International Convention Center, Taipei, Taiwan,  
18 to 22 October 2010.

 83. H.-T. Lin, G. G. Leisk, B. Trimmer, GoQBot: A caterpillar-inspired soft-bodied rolling robot. 
Bioinspir. Biomim. 6, 026007 (2011).

 84. S.-i. Aoshima, T. Tsujimura, T. Yabuta, A miniature mobile robot using piezo vibration 
for mobility in a thin tube. J. Dyn. Syst. Meas. Control 115, 270–278 (1993).

 85. D. W. Haldane, K. C. Peterson, F. L. Garcia Bermudez, R. S. Fearing, Animal-inspired design 
and aerodynamic stabilization of a hexapedal millirobot, in Proceedings of the 2013 IEEE 
International Conference on Robotics and Automation (IEEE, 2013), Karlsruhe, Germany, 6 
to 10 May 2013.

 86. D. W. Haldane, R. S. Fearing, Running beyond the bio-inspired regime, in Proceedings of 
the 2015 IEEE International Conference on Robotics and Automation (IEEE, 2015), 
Washington, USA, 26 to 30 May 2015.

 87. C.-H. Hsueh, Modeling of elastic deformation of multilayers due to residual stresses 
and external bending. J. Appl. Phys. 91, 9652–9656 (2002).

Acknowledgments: We thank the University of California at Berkeley Marvell Nanofabrication 
Laboratory for the deposition of electrodes. We thank the insightful suggestion from N. Ramirez and 
the gaits statistics from F. Sui. Funding: This work was supported by the Berkeley Sensor and 
Actuator Center (BSAC), an NSF/Industry/University Research Cooperation Center. Y.W. is supported 
by a scholarship from China Scholarship Council (CSC) and Tsinghua-Berkeley Shenzhen Institute 
(TBSI), Tsinghua University. Author contributions: Y.W. conceived, designed, and fabricated the 
prototype robots and experimental setup; performed the experiments; analyzed the data; and 
wrote the paper. J.K.Y. built dynamic simulations for robot model, performed high-speed video 
recordings and friction tests, analyzed the results, and wrote the associated method. J.L. assisted the 
experiment, built the setups, tracked the COM from movies, and analyzed the results. Z.S. built the 
FEM simulations, assisted the experiment, and analyzed the results. M.Q., Z.L., and X.Y. assisted the 
experiments and interpreted the data. M.Z. and X.W. reviewed and commented on the paper. R.S.F. 
commented on the introduction and edited the paper and figures. R.J.F. suggested the two-legged 
robot, analyzed arthropods’ maximum speed, and edited the associated section. J.Z., R.J.F., and L.L. 
directed the research and revised the paper. Competing interests: M.Z., Y.W., and X.W. are 
inventors on patent application (201910211869.3) submitted by Graduate School at Shenzhen, 
Tsinghua University, that covers a soft microrobot. Data and materials availability: All data 
needed to evaluate the conclusions of the paper are available in the paper or the Supplementary 
Materials. Source code is available on GitHub (https://github.com/justinyim/ISFMURSR-model).

Submitted 6 March 2019
Accepted 21 June 2019
Published 31 July 2019
10.1126/scirobotics.aax1594

Citation: Y. Wu, J. K. Yim, J. Liang, Z. Shao, M. Qi, J. Zhong, Z. Luo, X. Yan, M. Zhang, X. Wang, 
R. S. Fearing, R. J. Full, L. Lin, Insect-scale fast moving and ultrarobust soft robot. Sci. Robot.  
4, eaax1594 (2019).

 at AAAS on February 24, 2020
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 

www.ScienceRobotics.org     31 July 2019     Vol 4  Issue 32 aax1594              

http://www.ScienceRobotics.org
http://www.ScienceRobotics.org


R E S E A R C H  A R T I C L E

93www.ScienceRobotics.org     18 September 2019     Vol 4  Issue 34 aax4316
Savoie et al., Sci. Robot. 4, eaax4316 (2019)     18 September 2019

S C I E N C E  R O B O T I C S  |  R E S E A R C H  A R T I C L E

1 of 10

C O L L E C T I V E  B E H A V I O R

A robot made of robots: Emergent transport 
and control of a smarticle ensemble
William Savoie1, Thomas A. Berrueta2, Zachary Jackson1, Ana Pervan2, Ross Warkentin1, 
Shengkai Li1, Todd D. Murphey2, Kurt Wiesenfeld1, Daniel I. Goldman1*

Robot locomotion is typically generated by coordinated integration of single-purpose components, like actuators, 
sensors, body segments, and limbs. We posit that certain future robots could self-propel using systems in which a 
delineation of components and their interactions is not so clear, becoming robust and flexible entities composed of 
functional components that are redundant and generic and can interact stochastically. Control of such a collective 
becomes a challenge because synthesis techniques typically assume known input-output relationships. To discover 
principles by which such future robots can be built and controlled, we study a model robophysical system: planar 
ensembles of periodically deforming smart, active particles—smarticles. When enclosed, these individually immotile 
robots could collectively diffuse via stochastic mechanical interactions. We show experimentally and theoretically 
that directed drift of such a supersmarticle could be achieved via inactivation of individual smarticles and used 
this phenomenon to generate endogenous phototaxis. By numerically modeling the relationship between smarticle 
activity and transport, we elucidated the role of smarticle deactivation on supersmarticle dynamics from little 
data—a single experimental trial. From this mapping, we demonstrate that the supersmarticle could be exogenously 
steered anywhere in the plane, expanding supersmarticle capabilities while simultaneously enabling decentral-
ized closed-loop control. We suggest that the smarticle model system may aid discovery of principles by which a 
class of future “stochastic” robots can rely on collective internal mechanical interactions to perform tasks.

INTRODUCTION
Self-propulsion (1) is a feature of living and artificial systems across 
scales—from crawling cells to swimming spermatozoa (2), micro- (3) 
and nanoswimmers (4), running cockroaches (5), and robots (6, 7). 
It is generally assumed that self-propelling systems require carefully 
orchestrated integration of many diverse components to perform 
the seemingly simple behavior of spatial translation. Thus, artificial 
locomoting systems typically consist of a central controller, a set of 
actuators and sensors to perform feedback control, and an objective 
function written in terms of individual system states; such designs 
have led to progress in machines that robustly and nearly autonomously 
roll (8), fly (9), and walk (10, 11) in relatively predictable environments.

In contrast to such “deterministically” designed robots, future 
more “stochastically” designed robots could generate self-propulsion 
using systems in which a delineation of components is not so clear, 
such that many redundant and generic elements fluidly interact and 
collaborate to achieve complex tasks (Fig. 1). Although such designs 
are potentially advantageous due to wide system reconfigurability 
and robustness to component damage, it is not yet clear how to build 
such a system to operate in natural environments. There are several 
reasons for this, some of which have been anticipated by insights 
from modular and swarm robotics (12–15), physics of active matter 
(13, 16–21), amorphous computing (22), and engineering of reliable 
systems from unreliable components (23).

For one, future stochastically designed robots (and collectives/
swarms) may contain so many components (members) (24, 25) that 
it might be infeasible to carefully arrange and couple the elements 
to generate coordinated translation or rotation. Further, like in 
crawling cells where locomotion is generated through cytoskeletal 
reconfigurations via shape-changing proteins, individual elements 

may be task-incapable [e.g., unable to move on their own, unlike in 
collective robot locomotion via mechanical rectification of individual 
bristlebots in (26, 27)]. In such situations, the robot’s objective should 
not depend on deterministic interactions between components but 
instead on emergent ensemble-level behaviors (25, 28). Thus, it becomes 
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Fig. 1. Stochastic robotic collectives. Future robots may be composed of compo-
nents whose delineation is neither clear nor deterministic, yet are capable of 
self-propulsion via the expression of ensemble-level behaviors leading to collective 
locomotion. In such a robot, groups of largely generic agents may be able to achieve complex 
goals, as routinely observed in biological collectives.
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a question of leveraging or mitigating the inherent uncertainty of 
internal component interactions to develop reliable control schemes 
of the ensemble.

Traditional control synthesis techniques determine which inputs 
best, and most robustly, enable a system to achieve an objective, 
such as self-propulsion. It can be challenging enough to find control 
inputs that realize a well-defined objective in a deterministic system. 
In the case of a robot composed of robots with highly complex 
interactions between the system and the environment, and no single 
configuration of individual components necessary for the robot to 
achieve locomotion, control synthesis using traditional methods is 
infeasible. The notion that an ensemble may be able to accomplish 
a goal independently of the specification of its individual states is 
incompatible with typical theories of control that assume a central 
control architecture with full state information.

Here, we sought to discover principles by which a collective can 
overcome individual locomotor limitations via opportunistic but 
stochastic mechanical interactions among individuals. Specifically, we 
studied a simplified robophysical (29) model of controllable, smart, 
active particles—smarticles—that are immotile but have mutable 
shape. An enclosed smarticle ensemble—a supersmarticle—however, 
can self-propel diffusively using interactions arising from the shape 
modulation of smarticles. Despite stochastic interactions between 
elements, a supersmarticle is capable of directed motion by selectively 
inactivating its constituents, which we demonstrate by achieving 
endogenously steered phototaxis. To understand the supersmarticle 
diffusion and its dependence on internal mechanical interactions, 
we developed a model based on kinetic theory. To further explore 
the ensemble’s abilities, we introduce a data-driven algorithm that 
enables decentralized control synthesis with respect to ensemble 
properties. Using this algorithm, we modeled supersmarticle dynamics 
and demonstrate that the ensemble is capable of rich locomotion by 
taking advantage of more complex control strategies. We validated 
our algorithm by leading the supersmarticle on a simple path, 
demonstrating that collective locomotors may be reliably controlled 
through their ensemble properties despite being composed of 
stochastically interacting unreliable elements.

RESULTS
Smarticle dynamics
The smarticle’s form (Figs. 1 and 2A and Materials and Methods) 
was inspired by insights from a previous study of rigid, non-active 
“u-particles” (30), which demonstrated how material properties of 
an entangling collective could vary via changes in the shape of its 
constituents. Smarticles, when active, perform a “square gait,” inspired 
by the dynamics of Purcell’s three-link swimmer (31, 32), and depicted 
in Fig. 2B. Outside of a frictional medium [e.g., (31, 32)], when resting 
in an orientation where the links’ axis of rotation is parallel to the 
normal of the surface it rests on, smarticles are incapable of transla-
tion or rotation (Fig. 2C) over hundreds of oscillation cycles. The 
moving links rest above the central link and never interact with the 
surface (movie S1).

Despite their inability to significantly self-propel, an individual 
robotic smarticle’s position and orientation can change as a result of 
a collision, as shown in Fig. 2D. When viewed as an ensemble, a 
“cloud” of self-deforming smarticles may display weak cohesion on 
short time scales, forming a rudimentary collective flocking unit 
(Fig. 3, A and B, and movie S2). That is, unlike single smarticle ex-

periments, we found that the center of mass (CoM) of the cloud could 
diffuse over scales comparable with the size of a smarticle (see fig. S1).

Because of interactions between smarticles, the area fraction φ 
typically decreased over time as in Fig. 3C. Here, φ = nAp/Ac, where 
Ac is the area of convex hull of the smarticles (bodies and arms) in 
the cloud (Fig. 3A), n is the number of smarticles in the system, and 
Ap is the area of a single smarticle. The decrease in φ was not always 
monotonic; in certain trials, increases in φ occurred (Fig. 3C). Despite 
purely repulsive interactions at surfaces, smarticles could both repel 
and attract their neighbors (see Fig. 3B). This emerges from the particle 
geometry: Collisions between particles in concave configurations can 
generate attraction via arm entanglement (30).

After sufficient time, the cloud’s mobility slowed as smarticles 
separated and no longer interacted strongly. We quantified collec-
tive mobility using the cloud’s “granular temperature,” defined as 

 〈  V   2  〉=1 / 3  〈  〈  v   2  〉  n   −  〈v〉 n  2   〉  N   , where  v =  √ 
_

   x ̇     2  +   y  ̇    2    + (2l + w )  √ 
_

     ̇    2     sums 

the translational plus rotational velocity of n smarticles of length 
l and width w and averages over N experiments (33, 34). On long time 
scales, a single experiment’s V2 may approach the noise floor (seen 
in Fig. 3D) (35), thereby limiting the flocking ability. For this study, 
we determined the noise floor empirically by measuring the granular 
temperature of non-interacting smarticles.

Supersmarticle dynamics
Given the correlation between φ (Fig. 3C) and 〈V2〉 (Fig. 3D), we 
hypothesized that we could sustain locomotion on longer time scales 
by constraining φ of the collective. To achieve this, we confined five 
smarticles within a ring, creating what we call a supersmarticle. Each 
smarticle in the supersmarticle starts at a random phase in the square 
gait and continuously performs a square gait inside an unanchored rigid 
ring of radius R = 9.6 cm and variable mass m ∈ [9.8 g, 207 g] (Fig. 4A). It 
takes t = 225 (where  = 1.6 s) before two smarticles are > out of phase. 
The ring diameter was chosen such that φ and 〈V2〉 remained high, 
yet there was enough area that jamming was rare and self-resolvable.

The ring confinement maintained φ at approximately the value 
observed at the initiation of the cloud trials (see Fig. 3A). Similarly, 
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Fig. 2. Smarticle robot dynamics. (A) Top view schematic w = 5.3 cm and l = 4.9 cm. 
(B) Clockwise (CW) square gait, with key configurations enumerated. (C) Drift of a 
single smarticle on a flat surface, executing a square gait over 38. (D) Tracked 
trajectory of a smarticle within an ensemble of other self-deforming smarticles; color 
gradient (blue to red) represents passage of time 47, with  = 1.6s.
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〈V2〉 of the supersmarticle system (Fig. 4B) remained at approximately 
the value found at the highest φ in cloud trials (Fig. 3, C and D). This 
led to persistent diffusive transport of the supersmarticle (Fig. 4B). 
Within the ring, individual smarticles displayed complex interactions, 
often displacing an amount comparable with, or greater than, the 
displacement of the ring itself, as shown in Fig. 4C.

Tracking the supersmarticle’s motion for a ring of mass m = 68 g 
(movie S3) revealed no correlation between final angular position 
between trials (e.g., Fig. 4D). We used 2(t), the mean square dis-
placement (MSD) of the ring, to characterize the motion: 2(t) = 
〈x2(t)〉 − 〈x(t)〉2, where 2(t) ∝ t and  specifies the type of diffusion 
the system undergoes. The supersmarticle exhibited different types 
of diffusion—normal (0 <  ≤ 1), superdiffusive (1 <  < 2), and even 
approximately ballistic ( ≥ 2)—depending on the time scale observed 
(36). The short time scale regime was consistent with  = 1 (Fig. 4E), 
indicating normal diffusive motion. The long time scale regimes 
were best fit with  ≈ 1.45 representing directionally invariant super-
diffusive motion.

We found that, if a smarticle near the boundary maintained a 
fixed straight shape or became “inactive” (Fig. 5A), the supersmarticle 
displayed directed drift on short time scales (movie S4). Because the 
angular position of the inactive smarticle around the ring was not 
fixed, drift in a constant direction was not observed on longer time 
scales in the laboratory frame (see fig. S2). When trajectories were 
examined in the frame of the inactive smarticle (Fig. 5B), the bias in 

drift toward the inactive smarticle became clear. In Fig. 5C, the cu-
mulative displacements are shown in the continuously rotating 
frame attached to the center link of the inactive smarticle such that 

  S  ∥  (t ) =   ∑ 
i=0

  
t
       → s     i  ⋅    ̂  R   ∥  

i
    and   S  ⊥  (t ) =   ∑ 

i=0
  

t
       → s     i  ⋅    ̂  R   ⊥  

i
   . Here,      → s     i   denotes the vector 

connecting the center of the ring at consecutive instants in time, 
and     ̂  R   ∥  

i
  ,    ̂  R   ⊥  

i
    are the unit vectors specifying the local frame (Fig. 5B). 

As with the fully active supersmarticle, the dynamics of the super-
smarticle containing an inactive smarticle were superdiffusive and, 
at short time scales, approximately ballistic, as indicated by  ≈ 2.
Statistical model
To understand the supersmarticle diffusion and its dependence on 
internal mechanical interactions, we developed a model based on 
kinetic theory. Formally, the average displacement of the ring would be 
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Fig. 4. Collective confined diffusion. (A) Supersmarticle top view; ring inner radius 
is 9.6 cm. The four gray spheres were used to track the motion of the ring. (B) Granular 
temperature of five active smarticles confined in a ring; black line is raw data over 
10 trials, and blue is a moving window mean with a window size of 1. (C) Trajectories, 
from an experiment, of a smarticle inside the ring (purple), and the ring’s center of 
geometry (blue). (D) Experimental tracks of ring trajectory for 50 trials; mring = 68 g. 
The black circle represents the size and initial position of the ring. (E) MSD averaged 
over 50 and 80 trials, for the active and inactive systems, respectively, all lasting 
75. The inset shows the average change of  for active (black) and inactive (blue) 
systems. The oscillation seen in both the MSD and  is related to the gait period  
(where  = 1.6 s).
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Fig. 3. Smarticle cloud dynamics. (A) Snapshot of experimental trial, with the 
dashed line indicating the boundary of the convex hull area AC. The cloud’s CoM 
trajectory is illustrated in red, beginning at the black dot and ending at the red dot. 
Experiment ran for 113. (B) Center link trajectory of geometrically repulsive (top) 
and attractive interactions (bottom). (C) Evolution of φ averaged over 20 trials (black, 
with gray shaded region representing a single standard deviation); four individ-
ual trials are shown in blue, red, green, and brown lines. (D) 〈V2〉 averaged over 20 cloud 
trials. Raw data are in black; the blue line is moving mean with a window size of 1. 
Red line and area surrounding it represent mean value and single standard deviation 
of 〈V2〉 noise of an experiment lasting 10 with seven moving, but non-interacting, 
smarticles. Here, gait period  = 1.6 s.  at AAAS on February 24, 2020
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given by   〈  → R  〉 = ∫ P (    →   )    → R   (    →   )  d  →    , where    →    represents the micro-
state (i.e., position, orientation, and heading) of the supersmarticle 
constituents immediately before a collision, and    → R    is the ring dis-
placement due to an individual collision. The resulting mean ring 
displacement,  〈  → R  〉 , is then computed by integrating displacements 
due to individual collisions over the microstate probability distribu-
tion. However, because we do not have access to the detailed rela-
tion of    →    to the complicated smarticle-smarticle and smarticle-ring 
collisions, this calculation is intractable, demanding the develop-
ment of a simplified ensemble model.

We imagine active smarticles rattling inside the ring and colliding 
against the ring and the inactive smarticle. The role of the active 
smarticle in the supersmarticle is simplified as simple contacts around 
the ring. The contacts are abstracted as nudges (Fig. 6A). Each nudge 
has a uniform probability to act in any direction. As a result of 
symmetries in the system geometry, we may partition the space of    →    
into six distinct types of collisions. Six collisions arise from two 
independent factors: whether or not the inactive smarticle is in 
contact with the ring and which of three regions of the ring the active 
smarticle contacts (denoted by roman numerals in Fig. 6B). Each of 
these individual collision types generates a unique response on the 
collective system.

This simplification leads to a model with two random variables. 
The first is an angle  that represents the direction of an individual 
nudge and takes a value between 0 and 2. The second is a binary 
variable  that represents whether or not the inactive robot is in 
contact with the ring. These variables together represent the various 
microstates  of the system. Depending on the value of the random 
variables, an individual nudge can move either the ring or both the 
ring and the inactive particle. Then, focusing on the movement of 
the ring, we must determine RA and RB, which are the distances that 
a nudge will displace the ring when moving only the ring, and when 
moving both ring and inactive smarticle, respectively. The possibili-
ties for ring movement are summarized in table S1.

With RA and RB, we can describe the simplified model of the 
supersmarticle ensemble in expectation, which we decompose into 
parallel and perpendicular components (see Fig. 5B). Denoting the 

proportion of time that the inactive smarticle is in contact with the 
ring as , the frequency of nudges as f, the amount of time the super-
smarticle has been moving as T, the inactive smarticle’s angular 
diameter as  (see Fig. 6B), and treating each nudge as an independent 
event, the expected component of the velocity of the ring along    ˆ R   ∥    
of the inactive smarticle is

  〈  v  ∥   〉 = ( f  /  ) [( R  A   −  R  B   ) (1 − sin( ) ) − (1 −  )  R  A   sin( ) ]  (1)
The perpendicular component of the ring velocity is simplified sub-

stantially because we know by symmetry that  〈  → R  〉 =   ∑ 
i=1

  
6
   〈    → R    i   〉 = 〈   ˆ R   ∥   〉 . 

This is to say that the mean displacement of the ring averaged over 
all distinct collisions is in the parallel direction; hence

  〈  v  ⊥   〉 = 0  (2)

However, the variance along this direction is non-zero. The cor-
responding variances to the expected parallel and perpendicular veloc-
ities, Var[v∥] and Var[v⊥], are detailed fully in Materials and Methods.

Last, to completely specify this model, we must calculate RA and 
RB. To this end, we determine the relationship between the mass of 
the ring and the distance it moves from a nudge by modeling the 
active smarticles as pistons pushing on a sliding mass (see Materials 
and Methods). The predictions resulting from this model are plotted 
in Fig. 6C and fig. S3.

The theory correctly predicts the supersmarticle’s drift speed rela-
tive to that calculated experimentally as 〈v∥〉 = S∥(T)/T with T = 75. 
The theory predicts that the direction of 〈v∥〉 will reverse for a large 
enough ring mass. Directionality depends on the mass ratio ℳ = 
msmarticle/mring between the inactive smarticle and the ring, with 
reversal at a critical value of ℳ ≈ 0.8. To test this prediction, we 
conducted experiments for a series of different ring masses. The 

A
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C

Fig. 5. Biasing supersmarticle transport. (A) Supersmarticle schematic, with the 
inactive smarticle in red. (B) Supersmarticle trajectory frame transformation from 
laboratory to inactive smarticle frame. (C) Supersmarticle trajectories rotated into the 
laboratory frame, where axes are now the perpendicular and parallel components 
to the frame of the inactive particle.

A

B

C

D

Fig. 6. Statistical model of supersmarticle transport. (A) Schematic of the theoretical 
collision model. (B) Three regions with distinct collision types for the theory as 
described in the text. (C) Theoretical (red) and experimental (black and blue) data 
for velocity versus mass ratio ℳ, showing mean and standard deviation. The blue 
data point is offset in ℳ for visibility and represents an experiment where the inactive 
particle was endogenously chosen by light (see text) for 40 trials. (D) Distributions of 
drift speed probabilities for ℳ regimes.
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results are summarized in Fig. 6C. The theory closely predicts the 
mean velocity, including direction reversal (movie S5). Although the 
theory predicts 〈v⊥〉 = 0 (fig. S3), we observed slight discrepancies, 
particularly at larger ℳ. We attribute these discrepancies in variance 
to correlations between collisions, whereas the theory assumes that 
collisions are independent.

The model elucidates the physics governing the dependence of 
〈v∥〉 on ℳ, as a function of the ensemble’s internal mechanical 
interactions. Consider first the high-ℳ limit. The three collision 
types involving the (light) ring but not the (heavy) inactive smarticle 
dominate the net motion (see Fig. 6B). Both of the forward collisions 
(region 2) are of this type, as is one rearward (region 3) collision, 
resulting in a relatively large positive  〈    ̂  R    ∥   〉 . Conversely, in the 
low-ℳ limit, five of six collision types give rise to nearly equal magni-
tude ring displacements, the exception being the forward collision 
(region 1) of the active smarticle with the inactive smarticle when the 
latter is not in contact with the ring, in which case the ring displacement 
is exactly zero. This deficit in the forward-directed ring displacement 
results in a (small) negative value for the net displacement.

The close agreement between theory and experiment for the drift 
speed velocity is perhaps unexpected: With only N = 4 active smarti-
cles, it is not clear that a purely statistical kinetic theory approach 
should work. The theory overestimates the observed fluctuations in 
Fig. 6C, an indication of substantial correlations in the smarticle 
swarm collisions, which will be the focus of future work. Yet, despite 
this incongruity with the variance, the derived theoretical model is 
still capable of generating the directed motion of the ensemble ob-
served experimentally in the frame of the inactive smarticle.
Directing a phototaxing supersmarticle
On the basis of the intuition gained from the kinetic model, we pro-
grammed smarticles to inactivate when light detected from its photo-
sensor exceeded a threshold. When illuminated at low angles (i.e., in 
the plane of the smarticle light sensors), photoinactivated smarticles 
occlude light from neighbors further from the source (Fig. 7A, inset), 
creating a situation similar to that analyzed in the previous section. 
The inactivated smarticle occludes the light from its neighbors: The 
straightening and resulting occlusion of light serves as a decentral-
ized and stigmergic directive. The inactive smarticle is affecting the 
motion of the ring by affecting the motion of the remaining smarticles. 
This decentralized strategy has been used in previous swarm robotic 
collectives to generate group movement and transport without 
requiring explicit communication between agents (37, 38).

However, we found that rather than regulate the angular location 
of an individual inactive smarticle, the static light source induced a 
switching sequence of inactive smarticles, leading to supersmarticle 
phototaxis. Because collisions in the ring can cause an inactive 
smarticle’s position to shift, when an inactive smarticle was dis-
located from its lighted position, it switched to the active state. Con-
sequently, an active smarticle could then be nudged into a position 
to receive enough light to become inactive. Hence, the supersmarticle 
phototactic drift was via endogenous steering, that is, where smarticle 
immobilization was spontaneously selected for without external 
feedback (see Fig. 7A and movie S6).

The endogenously forced system drifted in a preferred direction in 
the laboratory frame with a similar 〈v∥〉 to that of the non–light-driven 
system (Fig. 6C), whose drift was only observable in the frame of the 
inactive smarticle. This is remarkable given the complex switching 
dynamics of the inactive smarticle: For example, depending on dis-
tance and orientation relative to the light, it was possible for multiple 

smarticles to be simultaneously inactive as depicted in Fig. 7B. 
Moreover, the rotational symmetry of the supersmarticle allows one 
to infer that if the supersmarticle can translate in one direction, it 
should be able to translate in another direction by selecting different 
inactive smarticles.

To further highlight the supersmarticle systems indifference toward 
which smarticle is inactive, we plotted the cumulative distribution 
of total inactivity time in the form of a Lorenz curve (Fig. 7C). The 
curve presents the share of inactive time covered by the smarticle 
spending the least time being inactive (39). The shape of the Lorenz 
curve reflects the inequality in the distribution of the inactivity times 
of the smarticles: The more concave the curve, the more unequal 
the distribution. To characterize the Lorenz curve, we introduce the 
Gini coefficient, G, defined as the ratio of the area between the Lorenz 
curve and a line representing equality to the total area under the line 
of equality (39, 40). A value of 0 represents equality, and a value of 
1 is perfect inequality. In a single endogenous experiment lasting 
25 min where the light changed directions five times (see movie S6), 
we found that G = 0.21 (see bolded line in Fig. 7C). The Lorenz curve 
using data from all trials shows that 57% of the inactivity time was 
accounted for by 43% of the smarticles.

By considering each of the five excursions independently, the 
Gini coefficient and Lorenz curve can change markedly (see un-
bolded lines in Fig. 7C). For singular excursions, certain smarticles 
may remain in the inactive position for extended periods of time 
with a static light source, thus giving the Lorenz curves high values 
of inequality. This is a result of aforementioned correlations that can 
happen in smarticle collisions. On shorter time scales, the correla-
tions may incorrectly lead one to believe a smarticle hierarchy exists; 
however, on long time scales, it becomes apparent that the smarticles 
are indeed commutable.
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Fig. 7. Endogenous supersmarticle phototaxis. (A) Trajectory from an experiment 
of a self-directed (endogenously forced) photophilic supersmarticle tracking a static 
light source (movie S6). Inset: Schematic showing how a smarticle in the straight 
configuration can occlude light from smarticle behind it. (B) Map depicting when and 
which smarticles endogenously inactivate. (C) Lorenz plots detailing general equality 
of smarticle inactivity over a 25-min endogenous trial consisting of five separate 
excursions in different directions (see movie S6). Over the complete trial, we found 
G = 0.21, as shown in the bolded line. The unbolded lines are the Lorenz curves for 
the five separate excursions, where we found G = [0.28, 0.4, 0.42, 0.34, 0.49].
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Thus, although crude, the endogenously drifting supersmarticle 
result demonstrates that the collective can perform a task/behavior 
(40) such that locomotor control of the system is decentralized and 
offloaded completely to mechanical interactions (41) in response to 
highly structured environmental signals (i.e., smarticle inactivity 
patterns).
Discovering emergent control authority
Most control synthesis techniques from the past six decades rely on 
a deterministic understanding of actuation and its effect on system 
states (42). But to create an organized system out of disorganized 
components, it is necessary to understand what the collective can 
accomplish as a function of uncertain subsystem interactions (43). 
To enable the discovery of control strategies for collective locomotors, 
control must be synthesized with respect to ensemble properties 
rather than individual states.

We expect an ensemble’s control authority to be an emergent 
property rather than intrinsic. To address this, we introduce the 
notion of a candidate control signal to hypothesize actuation mecha-
nisms based on broken symmetries in the system (44). Using control 
signals, we can take a system with symmetry—and associated con-
served quantities—and apply control to break the symmetry, thereby 
asserting authority over otherwise conserved quantities. When actua-
tion mechanisms are unknown, symmetry breaking can be used 
as a way to hypothesize candidate control signals contributing to a 
system’s emergent control authority.

Given a candidate control signal, we apply a nonparametric, un-
supervised learning algorithm, dynamical system segmentation (DSS), 
to discover ensemble-level behaviors in relation to the signal. DSS 
extracts distinct system dynamics from the interactions of internal 
states and, when present, the effect of candidate control signals on 
states (45). Initially, the algorithm constructs a set of system models 
over sequential windows in time—each locally capturing the net 
effect of interactions between internal states and candidate control 
signals on the ensemble dynamics.

In constructing the set of models, we represent elements of the 
set using the Koopman operator,  K —an infinite-dimensional linear 
operator describing measure-preserving nonlinear dynamical systems 
through the evolution of observables (46). This choice of model is 
important because the Koopman operator does not explicitly require 
state information to describe the evolution of the system. Instead, 
the operator depends on observables, which may be any time-varying 
sensor measurement or property of the system such as mass, volume, 
or temperature. Formally, observables g are real-valued functions 
drawn from an infinite-dimensional Hilbert space, ℍ, that take 
measurements as their argument. The evolution of an observable 
through the infinite-dimensional Koopman operator is

  Kg( x  k   ) = g(F( x  k   ) ) = g( x  k+1  )  (3)

where  K : ℍ→ ℍ  acts directly on the observables in the function 
space. We approximate  K  in finite dimensions with a data-driven 
operator K : ℋ→ ℋ by choosing a basis for some subspace ℋ ⊂ ℍ 
and applying least-squares optimization to compute K. The finite- 
dimensional operator, K, is then an N × N matrix for a given choice 
of N-dimensional basis.

The algorithm then condenses the set of Koopman operators 
into a set of non-redundant exemplars by applying nonparametric 
clustering (47) directly onto the set of models—where each element 
is itself a matrix. The resulting compressed set contains all unique 

dynamical system behaviors observed in the dataset of sequential 
measurements. DSS achieves this without assuming how many 
behaviors the system exhibits—an important property when the 
cardinality is generally unknown a priori.

The output of DSS is a set of distinct, yet related, ensemble 
behaviors represented by a probabilistic graphical model  G = (𝕂𝕂, 𝔼𝔼) . 
The graph’s node set is specified by the compressed set of system 
behaviors, and its edge set is determined empirically by the transi-
tions observed in the training dataset. In this model, the ensemble 
behaviors, each of which is a deterministic description of the ensemble 
dynamics at a given configuration, are random variables whose joint 
probabilities are in  G . We refer to the information encoded by  G  as 
the system’s behavioral patterns.

Although the literature of learning control is evolving rapidly, 
existing methods are not immediately well suited for a problem as 
ill-posed as discovering emergent control authority. For one, reliably 
designing payoffs to reward emergence may not be possible, making 
it difficult to directly apply most reinforcement learning approaches 
(48–50). Moreover, techniques in inverse reinforcement learning, 
such as learning from demonstration (51) and imitation learning 
(52), typically suffer from a lack of generalizability, limiting the use 
of learned behaviors. DSS avoids these pitfalls by directly analyzing 
distinct system behaviors and constructing a predictive model from 
these subsystem interactions, leading to a generalizable model. In 
addition, DSS is extremely data efficient, which is critical given that 
emergence is typically a rare phenomenon.
Decentralized control of supersmarticles
On the basis of observations made in previous sections, we know the 
switching sequence of inactive smarticles (Fig. 7B) is causally related 
to system behavior via the breaking of symmetries in the internal colli-
sion distribution of the supersmarticle. We used this sequence as a 
candidate control signal and modeled its effect on supersmarticle dy-
namics with DSS. By taking data from a single endogenous phototaxis 
demonstration (such as Fig. 7A), we instantiated two separate models 
of the supersmarticle dynamics with DSS—one with candidate control 
information and one without—and studied their respective behavioral 
patterns. The basis functions used in DSS were selected on the basis 
of their ability to represent information about the relative locations of 
inactive smarticles within the ring and their effect on the motion 
of the supersmarticle (see the Supplementary Materials for details).

The resulting graphical models are shown in Fig. 8 (A to C) along 
with a graph constructed from the observed smarticle switching se-
quence. We refer to the switching sequence of inactive smarticles ob-
served in the given experimental trial as the experimental inactivity 
patterns, shown in Fig. 8A as a graph. Each node in the graph of Fig. 8A 
represents a unique combination of smarticles that were experimen-
tally observed to be simultaneously inactive, and the number in each 
node refers to the unique label of the respective inactive smarticles. 
For example, in Fig. 8A, the green node labeled 4 indicates that, at 
some point in the experimental trial, smarticle number 4 was inactive, 
and subsequently smarticle 1 also became inactive, changing the 
supersmarticle to the dark blue node labeled 1 and 4. We used the 
complexity (i.e., graph complexity) of the experimental inactivity 
patterns graph to represent an estimated baseline complexity of 
supersmarticle behaviors. If the candidate control signal was causally 
related to the ensemble dynamics, the system should have responded 
to actuation leading to behaviors identifiable by DSS.

Without candidate control information, DSS is unable to identify 
a set of behaviors explaining the observed drift, as seen in the nominal 
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behavioral patterns in Fig. 8B. However, when candidate control 
information is incorporated, DSS extracts a set of emergent behav-
ioral patterns of equal cardinality to the inactive smarticle switching 
sequence (Fig. 8C), where numbered nodes correspond to distinct 
behaviors identified by DSS. We note that there is no one-to-one 
correspondence between identified behaviors and elements of the 
candidate control signal. This is to be expected because the ensemble 
dynamics are not exclusively determined by the candidate control 
signal and are also driven by uncertainty, which is captured by the 
probabilistic transitions in the generated graphs.

Through endogenous steering, we showed that the supersmarticle 
is capable of directed transport toward a fixed objective. To improve 
on the controllability of the ensemble shown in previous sections, 
we looked for alternative locomotion strategies in simulation by 
synthesizing control to directly manipulate the algorithmically 
extracted ensemble behaviors. Previous work in control of inter-
connected stochastic systems has shown that integral control can 
often be a simple and robust strategy (53). However, due to the dis-
continuous nature of supersmarticle inactivations, model-based 
control is necessary to directly optimize system actions.

We designed a simple decentralized model-predictive controller 
that greedily searches for inactive smarticle switching sequences to 
alter the ensemble’s behavior—as determined by its DSS model—to 
achieve a collective objective. The collective objective was expressed 
as a quadratic cost on the position of the supersmarticle centroid 
with respect to a desired goal location in the world frame. The super-
smarticle centroid was calculated via distributed consensus in a fully 

connected topology (see the Supplementary Materials for additional 
details) (54). We conducted four sets of Monte Carlo simulations 
(40 trials each), over distinct goal locations—left, right, up, and 
down—with randomized initial conditions for a duration of T = 75 
per trial (where  = 1.6s). The objectives were always equidistant and 
located directly vertically or horizontally from the initial conditions.

The resulting trajectories shown in Fig. 8D were exogenously 
steered in the world frame by the independent decision-making of 
individual smarticles. The simulation results confirm the symmetry- 
based theoretical predictions: The ensemble should be capable of 
locomotion anywhere in the plane via exogenously selected smarticle 
inactivations—even when we train the model using only a single 
trajectory moving in a single direction. The supersmarticle provides a 
test case for whether DSS can detect emergent behavior and whether 
DSS (or related algorithms) should be used in more general settings 
where symmetry-based inference about control authority is not possible. 
By allowing an external source of feedback to inactivate smarticles, the 
decentralized controller manipulated ensemble behaviors to achieve 
more complicated goals than the model trained on, thereby predicting 
entirely emergent behavior. As a result of the generalizability of our 
machine learning model, we are able to make predictions and control 
the supersmarticle in entirely new settings, thereby harnessing the 
system’s emergent control authority to accomplish brand new tasks. 
We note that extending the smarticle hardware to accommodate for 
the proposed control algorithm can be done in a practical and com-
putationally efficient way and will be explored in future work.

On the basis of the simulation results, we experimentally validate 
the exogenous controllability predictions by guiding the supersmarticle 
through a simple maze using external feedback from an experimenter 
with a light source (Fig. 8E). Here, the experimenter is capable of 
directing the supersmarticle by freely shining a light source onto the 
ensemble, thereby using more complex inactivity sequences to achieve 
locomotion anywhere in the plane, just as the proposed decentralized 
control scheme did. Although the supersmarticle was provided with 
external guidance, it was able to achieve directed transport without 
state information or specifying individual objectives for its constituents. 
All movement was directly emergent from morphological computa-
tions in response to environmental signals (55). Hence, by framing 
the discovery of emergent control authority as a learning problem, 
we were able to hypothesize and model unconventional actuation 
leading to expressive controllable motion.

CONCLUSION
Inspired by a future in which a class of task-capable robots could be 
formed from myriad redundant and task-incapable components, we 
have created a primitive “robot made of robots” that can perform 
rudimentary phototaxis, despite none of its components—smarticles—
having locomotor capabilities. A generic statistical model accurately 
captures the fundamental drift dynamics, rationalizing how the 
supersmarticle can sense an aspect of its environment—light—and 
use this to endogenously steer itself via asymmetric inactivation of 
individuals. Further, through the introduction of novel machine 
learning techniques, we constructed a data-driven model of the 
ensemble, which enabled discovery and proof-of-control alternatives 
for generating exogenous steering when agents are capable of 
computation.

We emphasize that, unlike other mobile robots, the supersmarticle 
displays phototaxis without a central processor or dedicated motor 
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Fig. 8. Comparison between observed and numerically generated behavioral 
patterns. (A) Model shown is a graphical representation of a single inactive smarticle 
switching sequence observed in a phototactic experiment (such as Fig. 7A). We 
extracted graphical models using the DSS algorithm from the same experiment 
with and without candidate control information, shown in (C) and (B), respectively. 
(D) Simulated supersmarticle trajectories predict that the ensemble is capable of 
movement anywhere in the plane while receiving exogenous feedback from 
an external controller. (E) Experimental trajectory of a photophilic supersmarticle 
in which the system was exogenously steered through a maze by an experimenter 
(movie S7), validating the simulation’s predictions. The trajectory evolves in time from 
blue to red, and the black circles represent the initial and final ring configurations.
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components. The key ingredient, and what differentiates our collec-
tive from other robot swarms and locomoting collectives, is that our 
system is made of components that have very low control authority—
they cannot locomote individually—and are highly unpredictable—
they create emergent behavior from the highly complex interactions 
of their internal degrees of freedom. Although such a system might 
seem idiosyncratic, we note that it bears similarities to cascades of 
conformational changes in the nanomachines that regulate many 
cellular processes: proteins (56). Given the ubiquity of such processes 
in these tiny machines, we posit that our model smarticle system could 
provide inspiration for the generation of substantially more com-
plex task-capable ensembles like those pictured in Fig. 1, including 
perhaps three-dimensional (3D) collective locomotors and manipu-
lators. Enabling robots to flexibly reconfigure to collectively perform 
tasks in the presence of environmental noise and individual component 
malfunction or degradation (23) could enhance robustness in robot 
swarms across scales, from intravenous delivery (57–59) to search 
and rescue (60). Further, insights from collective robophysical sys-
tems (15, 61, 62) could elucidate principles by which biological col-
lectives [like slime molds (63)] perform tasks in complex natural 
environments.

MATERIALS AND METHODS
Smarticle robots
Each smarticle’s outer shell and arms, or outer links, are 3D printed. 
The arms are controlled by HD-1440A servomotors to a precision 
of <1∘ and with an accuracy of ±6∘. All processing and servomotor 
control is handled by an Arduino Pro Mini 328 (3.3 V/8 MHz model), 
which allows smarticles to be programmed to deform to specific 
configurations and gaits, where we define gaits as periodic trajectories 
in the configuration space (see Fig. 2B). When assembled, each single 
smarticle has a mass m = 34.8 ± 0.5 g. The system is powered by a 
3.7-V, 150-mAh, 30-C LiPo battery (Venom; Rathdrum, ID) enabling 
hours of testing. Smarticle positions and orientation were tracked using 
an infrared video recording hardware/software suite (OptiTrack; 
Corvallis, OR). All experiments were conducted on a 60 cm–by–60 cm 
aluminum plate leveled flat to <0.1∘.

Smarticle experiments
The Gini coefficient (G) is a statistical measure derived from the shape 
of the Lorenz curve. A value of G = 0 represents a situation of perfect 
equality, or in the case of the supersmarticle, all smarticles spent an 
equal amount of time being inactive. Conversely, a value of G = 1 is 
a maximally unequal trial, or one where only a single smarticle was 
inactive over the course of the experiment.

Statistical model
Below, we detail the full form of the variance of v∥

   

Var [  v  ∥   ] = –(f / 4  π   3  T ) [ π   2  sin(2Ψ ) ( R A  2   −  R B  2   λ)

     

+  R A  2  ((− 4  λ   3  + 2  λ   2  + 2 ) Ψ +  π   3 ((4  λ   2  + 2 ) / ( π   2  ) + λ–2 + (2Ψ ) / π ))

      –4  R  A    R  B   λ(2λ + 1 ) (–λΨ + Ψ + π)    
–  R B  2   λ(6(λ–1 ) λΨ–6πλ + 2  π   2  Ψ +  π   3 )

    

 –2(–λΨ + Ψπ ) ( R  A   –  R  B   λ )  (  4λ( R  A   –  R  B   ) sin(Ψ) 

     

 + cos(2Ψ ) ( R  A   –  R  B   λ ) )  ] 

    

Furthermore, the full form of variance of v⊥ is shown below

   
 Var [  v  ⊥   ] = –(f / 4T )  [    R B  2   ( + 2 ) −  R A  2  (( − 2 ) + 2) 

     
 + ( R A  2   −  R B  2    ) sin(2 )  ]   

    

To calculate the values of RA and RB, we must start with masses 
m1 and m2 such that the relative distance between them, x1 − x2, is 
specified by the actuation of the smarticles. The first mass, m1, rep-
resents the arm of a smarticle, and m2 represents the body. The mass 
of the boundary they push on is mb. Both m2 and mb have friction 
between them and the surface they are sitting on. This is shown in 
Fig. 6A. On the basis of this model, we arrive at the following equations 
of motion

   F  2   −  f  s   =  m  2     x ¨    2    

   f  s   −  F  b   = ( m  b   +  m  1   )   x ¨    1    (4)

where F2 and Fb are the friction force on m2 and mb, respectively, and fs 
is the force between m1 and m2. By specifying x1 − x2 = A0 sin (t + ), 
F2 = (m2 + 2m1)g, and Fb = mbg, these equations can be integrated 
to find how far mb moves. Then, by plugging in for mb—the mass of 
just the ring—and the mass of the ring and the inactive smarticle, 
we can find RA and RB, respectively, as well as 〈v∥, ⊥〉 and Var[v∥, ⊥].

Dynamical system segmentation
The DSS algorithm is composed of three primary subroutines: (i) 
the calculation of Koopman operators over sequential windows of 
time via least-squares optimization, (ii) nonparametric clustering over 
the space of Koopman operators to determine unique system be-
haviors, and (iii) training a supervised learning model [e.g., support 
vector machine (SVM)] to learn relationships between system be-
haviors and construct the complete probabilistic graphical model. 
In the following sections, we expand on these subroutines, and a full 
outline of the algorithm can be found in the Supplementary Materials.

Koopman operators
The DSS algorithm first requires calculating finite-dimensional 
Koopman operators over sequential windows of the dataset. Although 
there are many ways to frame Koopman operator synthesis, we 
implement it as a least-squares optimization (64). Given a choice of 
nonlinear basis function (x) and a data sample X = {x1, …, xM}, we 
can formulate the Koopman operator synthesis problem as solving

   min  
K

      1 ─ 2     ∑ 
k=1

  
M−1

    ‖( x  k+1   ) − K( x  k   ) ‖   2   

This optimization has a closed form solution of the following form

  K =  AG   †   

where † denotes the Moore-Penrose pseudoinverse, and the individual 
matrix components are

  G =   1 ─ M     ∑ 
k=1

  
M−1

  ( x  k   )   ( x  k  )   T   

  A =   1 ─ M     ∑ 
k=1

  
M−1

  ( x  k+1   )   ( x  k  )   T   
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Nonparametric clustering
Given a set of Koopman operators, DSS looks for distinct dynamical 
behaviors by applying nonparametric clustering directly onto the set 
of operators. In particular, we apply hierarchical density-based spatial 
clustering of applications with noise (HDBSCAN) (47), which is a 
nonparametric clustering algorithm that specializes in problems 
subject to noisy and sparse measurements. By using HDBSCAN, we 
were able to discern distinct behaviors from the set of Koopman 
operators. From these clustered classes, we constructed class exem-
plars as a means of creating a set of distinct Koopman operators 
corresponding to observed system behaviors.

Supervised model
Once DSS has compiled a condensed set of exemplar behaviors, the 
algorithm must then determine the dependencies between each 
behavior and the states of the system. To this end, we trained an 
SVM. We did this by using the clustered class labels from HDBSCAN 
to label the state-space data. Then, using this newly labeled dataset, 
we trained a soft-margin SVM that assigned discerned behaviors to 
state observations. The SVM, in conjunction with the condensed set 
of exemplar behaviors, gave rise to the probabilistic graphical model, 
where the dynamics of the system are described by stochastically 
shifting Koopman operators.

SUPPLEMENTARY MATERIALS
robotics.sciencemag.org/cgi/content/full/4/34/eaax4316/DC1
Text
Fig. S1. Unrotated center of mass trajectory of the smarticle cloud.
Fig. S2. Unrotated trajectories of the supersmarticle.
Fig. S3. Theoretical and experimental data for the perpendicular component of the 
supersmarticle drift speed.
Table S1. List of all six different types of collisions in the theoretical model.
Table S2. List of all parameters used in the theoretical model.
Algorithm S1. Dynamical system segmentation.
Movie S1. Individual smarticle performing square gait.
Movie S2. Smarticle cloud: Seven active smarticles.
Movie S3. Supersmarticle: ℳ= 0.51, five active smarticles.
Movie S4. Supersmarticle: ℳ= 0.51, one inactive, four active smarticles.
Movie S5. Supersmarticle: ℳ= 3.6, one inactive, four active smarticles.
Movie S6. Supersmarticle: ℳ= 3.6, endogenous phototaxing.
Movie S7. Supersmarticle: ℳ= 3.6, exogenous phototaxing.
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